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Abstract

This study is a geochemical investigation into the accretion of lower oceanic crust
and processes of shallow melt-rock reaction at mid-ocean ridges. Major-, trace-elements,
and isotopes from whole-rocks and minerals from the Lyngen Gabbro, a 480-My old
dismembered ophiolite from the Scandinavian Caledonides, indicate that this igneous
complex was produced from hydrous supra-subduction zone magmas, a remnant of an
incipient ocean-arc. Such ophiolites are better models for the structural evolution than
the geochemical evolution of the lower oceanic crust at mid-ocean ridges.

Minerals in gabbros from Atlantis Bank, Southwest Indian Ridge, a modern, in-
situ example of lower ocean-crust, were analyzed for major and trace-elements. The
MELTS algorithm indicates that these gabbros formed by near-fractional crystallization
at mid-crustal pressures. The gabbroic crust is more evolved than the lavas and
represents melts fractionated 50-95% relative to a mantle-derived melt-composition,
supported by trace-element models. This argues against the often-cited gabbro-glacier
accretion model, where mantle-derived melts are transported to a shallow melt-lens and
fractionates there before eruption. There remain >770-m of additional primitive
cumulates below 1500-m deep Hole 735B or within the underlying mantle. Thus, the
seismic Moho, beneath Hole 735B, could be the crust-mantle boundary, rather than an
alteration front as suggested elsewhere.

The Atlantis Bank gabbros have augites that are more primitive than plagioclases
and olivines with which they coexist. Melt-rock interaction, where ascending melts
dissolve the pre-existing gabbroic rocks and create hybrid magma may have caused this.
Dissolution-experiments for plagioclase-olivine and plagioclase-augite mineral pairs
were performed at 1180°-1330°C and 20-min - 24hrs. Dissolution occurs rapidly and out
of equilibrium, with the dissolution rates dependent on the AT above the solidus. Rocks
with small grain-boundary areas (coarse grained or nearly mono-mineralic) heat
internally when enclosed in hot magma, causing xenoliths or wall-rock to melt and
disaggregate. The dissolution-derived magma crystallizes minerals more refractory-
looking than the melts that precipitated the original gabbroic rocks. Assimilation of
gabbroic rocks increases the Na content and decreases the Fe content of the melt that
digests it, thus basaltic glasses formed after this hybridization will falsely reflect a lower
degree and pressure of mantle melting.

Thesis Supervisor: Henry JB Dick
Title: Senior Scientist at Woods Hole Oceanographic Institution
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Chapter 1

Introduction

The oceanic lower crust is dominated by olivine gabbro, generally composed of
olivine, plagioclase and augite (Coleman (1977)). It is generally believed that this lower
crust is formed by crystallization of basaltic magmas that ascend from the upper mantle.
The lower crust is unfortunately difficult to study at fast-spreading ridges and ocean
islands due to the 2+ km of dikes and lavas that cover it and the lack of tectonic windows.
Therefore, many studies have used ophiolites as analogues for the origin and nature of the
lower océan crust. Many authors inferred that most ophiolites are the remnants of mid-
oceanic crust (Nicolas, 1989, Elthon et al, 1992). However, it became apparent that the
exact tectonomagmatic setting of any one ophiolite is uncertain, and it has been suggested
that many ophiolites formed in supra-subduction settings (e.g. Miyashiro, 1975).

The extensive knowledge that rose from ophiolite studies, however, give us
valuable structural, petrologic and geochemical concepts to understand and classify the
origin of ophiolites and to understand crustal accretion at ocean ridges and how that
might differ between tectonic settings such as mid-ocean ridges, ocean arcs and back-arc
spreading centers. For example, it has been established that increasing activities of water
in magma increase the An-content of plagioclase at a given Ca/Na ratio of the melt
(.Housh and Luhr, 1991, Arculus and Wills, 1990). In addition, the activity of augite
increases with respect to olivine and plagioclase under wet conditions (Gaetani et al.,
1993), causing high-Ca pyroxene to crystallize before plagioclase. High-pressures (>5-
kbar) have the opposite effect on the anorthite-content of plagioclase relative to melt
composition (Panjasawatwong et al., 1995), resulting in decreased An% content of
plagioclase relative to lower pressure conditions. Variations in water content of mamgas
and pressure of crystallization are likely important across the accretionary spectrum from

mature ocean ridges to ocean arc environments.
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‘There are two main lines of thought on the geodynamic method of accretion of the
lower ocean crust (Figure 1-1 A and B). One is the so-called “gabbro glacier” model, the
other is the “many sills” model. The former end-member is based on observations in
ophiolites (Sleep, 1975; Dewey and Kidd, 1977 and Quick and Denlinger, 1993) and
developed further to account for geophysical observations at the East Pacific Rise (EPR)
and other magmatically robust spreading segments (Henstock et al., 1993; Phipps
Morgan and Chen, 1993). The gabbro-glacier model assumes that melt arrives directly
from the upper mantle to a shallow melt sill, where the magmas fractionate and the
cumulates subsequently flows downwards in a near steady-state fashion. Thus, the lower
crust at such a ridge should always be more primitive than the lavas from the upper crust.
The many sills model (Nisbet and Fowler, 1978; Pedersen, 1986; Bédard et al, 1988,
1991, 1993; Boudier et al., 1996; Kelemen et al., 1997b; Korenaga and Kelemen, 1997)
indicates that the lower crust is accreted by the injections by individual sills that
fractionate in-situ and eject their melt to higher levels. Thus, the lowermost crust is
largely accreted there, and the composition of the gabbros becomes gradually more
evolved upwards.

The truth probably lies between the gabbro glacier and the many sills model
(Maclennan et al., 2004), and many models have been proposed that combine the two.
Nevertheless, the extent to which the lower ocean crust interacts with subsequent
ascending magmas is largely unknown. The rate of assimilation is naturally dependent
on the heat available to incorporate and melt pre-existing camulates into magma, and the
residence time of the magma in the lower crust and other variables including ambient
lithospheric temperature. The effect of the composition and grain-size of the assimilant,
thus the compositional effects on the magma and lower crust, has not yet been established
for the oceans.

The potential temperature of the melts generated in the upper mantle at mid ocean
ridges could range from 1180°-1510°C (Klein and Langmuir, 1987, Kinzler and Grove,
1992), although other authors would disagree, arguing that the temperature is constant

around 1250°C (e.g. Green et al, 2000; Presnall, 2002). The upper end of the temperature
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Figure 1-1: A: The Gabbro-glacier model. B: The many sills model. C: The model from this study, where

the many-sills model is overprinted by melt-rock reaction, and xenoliths are being incorporated into the
ascending magma.
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spectrum represents the fast spreading ridges where the EPR is the fastest and hottest. It
has been documented that the EPR has a shallow axial magma chamber (AMC) (Detrick
et al., 1987) that lies at low velocity zone (Harding et al., 1989; Vera et al., 1990). Dunn
et al. (2000) showed the 5-8 km wide low velocity zone under the spreading center of the
EPR has as much as 20 % melt fractions within it. A second melt lens has been
documented near the seismic Moho transition (Crawford and Webb, 2002), and it has
been argued that its stability is limited, as any crystallization in the chamber causes the
surroundings to heat up and melt the surroundings in a manner that is not observed
(Chen, 2001). The EPR therefore clearly has a heat-budget that is big enough to re_melt
the lower crustal material. At intermediate-spreading ridges, the AMC reflector is found
at deeper levels in the crust (Phipps Morgan and Chen, 1993; Chen and Lin, in press).
The existence of shallow steady-state magma-chambers at slower ridges is debated
(Sinton and Detrick, 1992), and very deep magma chambers below the conductive
bouﬂdary-layer in the mantle (Mével et al., 2002) would not be possible to detect with the
seismic techniques available today (Detrick and Reeves-Sohn,.pers comm. 2004).
Erupted MORB show extensive differentiation and mixing that require that magma
chambers exist at slow-spreading ridges, even if only ephemerally. The evidence of
magma-chamber type processes happening before eruption at all ridges, suggest that there
should be sites that are hot enough to dissolve preexisting crustal material even if melt
bodies usually evade direct detection along the slow-spreading ocean ridges. Steady-state
and ephemeral magma-chambers are likely to reside in the crust long enough for
considerable interaction to occur between melts, cumulates and wallrocks.

Ocean islands are also sites of elevated magma-temperatures (Watson and
McKenzie, 1991; Clague et al., 1991). In fact, there are Hawaiian picrites that record
crystallization temperatures in excess of 1400°C (Natland, pers comm. 2004). Ocean -
islands develop post-shield volcanism of very different compositions from the earlier
shield-stage lavas. Their isotopes are more like those of mid-ocean crust, and they are
frequently very alkaline in composition (Yang et al., 2003). The post-shield lavas often

contain xenoliths made out of the pre-existing, tholeiitic, lower-crust that the hot-spot
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basalts had to penetrate to get to the surface (Fodor and Galar, 1997; Neumann et al.,
2000). This suggests that the post-shield stage magmas, which spend more time in the
lower crust than the shield-stage magmas, actually may have digested some lower crustal

material on ascent.

The purpose of this study is to constrain the processes by which the lower crust at
ocean ridges accretes, and to identify how the melts and cumulates interact there. The six
following chapters of this thesis progressively approach these subjects.

In Chapter 2, we used geochemical techniques to investigate the tectonomagmatic
origin of the Ordovician Lyngen Magmatic Complex, Northern Norway. We present 419
major and trace element analyses together with selected major- and trace element mineral
analyses and '“Nd/'“Nd-isotope whole-rock analyses of gabbroic to tonalitic plutonic
rocks from the Ordovician Lyngen Magmatic Complex in Troms, Northern Norway.
This dismembered ophiolite represents concurrent boninitic and tholeiitic magmatism in a
fore-arc setting, possibly in an outer arc high. The gabbro-compositions are very
different from those in silicic continental arcs. The cumulative rocks have extremely low
levels of incompatible trace elements and high levels of compatible elements, reflecting
melts derived from high degrees of melting in the mantle. The mineral compositions of
the gabbros indicate hydrous conditions during fractionation and the transition between
the boninitic and the tholeiitic cumulates is diffuse without tectonic contacts, suggesting
that magmatism happened concurrently.

In Chapter 3, we utilize the large database of major-element mineral-compositions
compiled for Hole 735B, at Atlantis Bank, Southwest Indian Ridge (Dick et al., 2002).
We develop an extensive, quantitative and qualitative fractionation-model for the crustal
section. We use a special version of the Melts program (Melts5) (Ghiorso and Sack,
1995) and in addition BASALT (latm) (Weaver and Langmuir, 1990) and Yang et al.
(1996) to evaluate the effect of melt-composition, oxygen fugacity, water, pressure, and
crystallization processes that produced the lower crustal rocks at Atlantis Bank. This

allows the extent of disequilibrium in the lower crustal material at Atlantis Bank to be
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quantified. We find that the best fractionation-model is fractional crystallization of a near
dry melt with Na; ~ 3 and Feg ~ 9 at crustal pressure on the quartz-fayalite-magnetite
oxygen fugacity buffer. The gabbros sampled at Atlantis Bank generally represent melts
that have crystallized 50-95% relative to a primary, mantle-derived magma. The basaltic
glasses sampled on and around Atlantis Bank represent a melt that crystallized 30-50%.
Therefore, the gabbro-glacier model is not valid for this slow-spreading ridge. Our
model predicts that approximately 770 vertical meters of the lower crustal section has not
been sampled and that the total crustal thickness at Atlantis Bank was more than 4.4-km.
Thus, the observed seismic Moho there may indeed be the crust-mantle boundary, and
not an alteration front as previously suggested by Muller at al. (1997). However, the
majority of the gabbros in the lower 1000 meters of the hole have plagioclase coexisting
with augite that have with Mg#’s up to 10% higher than required by fractional
crystallization of likely parental magmas in the area. Thus, we establish that interstitial
melts in a mush-zone have dissolved and reprecipitated pre-existing crystals, causing the
melt to become more Mg and Ca rich as plagioclase and augite dissolve rather than re-
equilibrate with the melt. In the many-sills model, the gabbros become progressively
more evolved upwards while accreting by fractional crystallization. Since we see that the
solid-lines of descent of the gabbros indicate assimilation-processes, the many-sills
model is only valid if pervasive overprints by ascending melts are incorporated (Figure 1-
1C).

In Chapter 4, we demonstrate the kinetics of melting of natural mineral-pairs
representative of the minerals found in lower ocean-crustal rocks, and find rapid melting
rates and unusual melt-compositions. Therefore, the melts produced in the experiments
allow us to assess the chemical changes that incorporating lower crustal material may
cause in the ascending magmas. Our experiments were carried out using olivine —
plagioclase and clinopyroxene - plagioclase mineral pairs over the temperature range of
1330 - 1220 °C at the quartz-fayalite-magnetite buffer for durations of 0.25 to 24 hours.
Isothermal experiments performed over the temperature range of 1230 — 1105 °C defined

the equilbrium phase relations in the system. The mechanisms of dissolution are similar
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to those found in other experimental studies that utilized end-member mineral
compositions. The experimental results were used to determine to what extent cumulate
igneous rocks from the oceanic lower crust would produce disequilibrium melt-
compositions. We find that the efficiency of the reaction is dependent on grain-size and
mineral-distribution of a rock that is reheated. Coarse-grained rocks (>3mm) will
disintegrate internally upon reheating, whereas finer grained rocks will melt from the
outside in. Mixing between the dissolution-melts and the surrounding magma is aided by
the disaggregation of the xenocrysts of different densities, and the viscosities of the
interstitial melts are similar to the ascending magma. The new, hybrid magma will have
higher Na; and lower Feg than the original. In addition, lower crustal assimilation of
gabbro will result in the destruction of troctolites in the lower crust, and will lead to the
early onset of high-Mg# olivine-gabbros.

In Chapter 5, we have analyzed the major element compositions of the magmatic
minerals of 99 gabbros from on and around Atlantis Bank, covering an area of almost
660-km’. Tectonic windows provide the necessary exposures of the lower crust at this
slow-spreading ridge (Tucholke and Lin, 1998). Samples from the northern area have the
most primitive magmatic minerals, extending to ferro-gabbros with evolved mineral-
compésitions. Gabbros from the Western Wall and the top of the bank have intermediate
compositions, whereas the southern rocks are all evolved, including layered olivine-
gabbros sampled at gabbro-peridotite contacts. Despite the large variations in mineral
chemistry in our samples, the primitive and evolved ends of the geochemical spectrum of
ODP Hole 735B have not been found in our data. Although we have sampled the area
extensively, we find that, like the gabbros from Hole 735B, the surface samples represent
melts that have crystallized 50-90% relative to mantle-derived compositions. Therefore,
if the lower crust was accreted by fractional crystallization, large amounts of troctolite are
expected to exist somewhere in the lowermost crust or intruded into the residual mantle at
depths below what is exposed on the sea-floor. However, the co-existing mineral-
compositions vary in such a way as to suggest extensive reaction, dissolution and

reprecipitation within the cumulate pile. A simple fractional-crystallization model, like
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that above, does not fully describe the evolution of Atlantis Bank gabbros. We propose
an alternative model where primitive cumulates at higher levels may have been re-
homogenized and transformed by later, interstitial melts.

In Chapter 6, we use the trace-element compositions of clinopyroxene from
gabbros on and around Atlantis Bank to re-evaluate the geochemical evolution model of
the gabbros and incorporated assimilation-fractionation-crystallization models (AFC) into
our crustal thickness estimates. The gabbros cannot have formed by fractional
crystallization alone, as the LREE/HREE ratios of the augites in the gabbros increase
significantly with fractionation. We find that even though the parental melts experienced
assimilation and/or in-situ fractionation (DePaolo, 1981; Langmuir, 1989), overall the
gabbro-suite reflects melts that crystallized >50-95% relative to a parental magma in
equilibrium with the mantle. This agrees well with our previous results using major-
elements in Chapter 3. We therefofe conclude that the estimate for the crustal thickness
at Atlz'mtis Bank of at least 4.4-km is valid, and that the melt that formed the lower ocean
crust at Atlantis Bank experienced extensive melt-rock reaction during ascent. In
addition, we found that the augites from a single diabase dikes indicate depleted melt
compositions different from the compositions in the augites. The dike may be the result
of late stage melting of the already depleted mantle.

In Chapter 7, we developed a method for calculation of trapped melt-fractions in
gabbros from the Southwest Indian Ridge from whole-rock analyses. The model is
calibrated with the use of in-situ mineral analyses mass-balanced with whole-rock
compositions. We find that the trapped melt-fraction of ODP Hole 735B is ~15% on
average. Eu-anomalies are inversely related to the trapped melt-fraction. This suggests

that the whole-rock positive Eu-anomalies in Hole 735B, the signature of cumulate

plagioclase, are masked by other REE’s, as seen in diabases.
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Abstract:

We present 419 major and trace element analyses together with selected major- and trace
element mineral analyses and '“Nd/"*Nd-isotope whole-rock analyses of gabbroic to
tonalitic plutonic rocks from the Ordovician Lyngen Magmatic Complex in Troms,
Northern Norway. We find that this dismembered ophiolite represents concurrent
boninitic and tholeiitic magmatism in a fore-arc setting, possibly in an outer arc high.
Our geochemical data demonstrates the distribution of lower-crustal material present in
such settings. The compositions are very different from silicic continental arcs. The
cumulative rocks have extremely low levels of incompatible trace elements and high
levels of compatible elements. Therefore, the magmas were likely the result of high
degrees of melting in the mantle. The mineral compositions of the gabbros indicate
hydrous conditions during fractionation. In at least one location the transition between
the boninitic and the tholeiitic cumulates is diffuse without tectonic contacts, suggesting

that magmatism happened concurrently.

Introduction

The lower ocean crust is generally inaccessible, and therefore its origin and nature have
often been studied in ophiolites. The exact tectonomagmatic setting of any one ophiolite
is, however, uncertain. Many authors have inferred that most ophiolites are the remnants
of mid-oceanic crust (Nicolas, 1989, Elthon et al, 1994). Other authors have suggested
that many ophiolites formed in supra-subduction settings (e.g. Miyashiro, 1975). The
extensive knowledge that rose from this controversy gives us valuable petrologic and
geochemical tools to understand and classify the origin of ophiolites. For example, it has
been established that increasing activities of water in magma increase the An-content of
plagioclase at a given Ca/Na ratio of the melt (Housh and Luhr, 1991, Arculus and Wills,
1990). In addition, the activity of augite increases with respect to olivine and plagioclase
(Gaetani et al., 1993), causing high-Ca pyroxene to crystallize before plagioclase. High-
pressure (>5-kbar) crystallization also results in this reaction series, but pressure has the

opposite effect on the anorthite-content of plagioclase relative to the melt composition
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(Panjasawatwong et al., 1995), resulting in decreased An% content of plagioclase relative
to lower pressure conditions.

Hydrous magmatic conditions are common in arcs. Such a supra-subduction
setting implies a tectonomagmatic environment ranging from back-arc basins, with
magma sources similar to those from mid-ocean ridges re-melted with the aid of plate-
derived water, through arcs and into the extremely depleted fore-arcs, often comprising
boninitic magmatism. In addition, the outer-arc high represents the incipient arc made up
of interspersed boninitic and tholeiitic magmatism. For instance, the Lau-Basin in the
Southeast Pacific comprises a boninitic outer arc high and fore-arc, through a small arc
and an actively spreading back-arc basin (Crawford et al., 1981). Isotope-geochemistry
and trace element geochemistry is used to support the theory that material derived from
the slab is introduced into the subduction-zone mantle wedge that subsequently melt, and
in addition, assimilation of existing mantle-rocks and crustal material may be assimilated
into the ascending magma (e.g. AFC, DePaolo, 1981.) Consequently, dismembered
magmatic complexes of oceanic origin can be put into a tectonic context using
geochemistry. In this study, we used geochemical techniques to investigate the
tectonomagmatic origin of the Ordovician Lyngen Magmatic Complex. We show that
the Lyngen Gabbro represents the transition from MAR-like hydrous magmatism to a

hydrous magma of a much more depleted source, like those in incipient arcs.

The Lyngen Magmatic Complex

The Lyngen Magmatic Complex dominates the Lyngen Peninsula and contains
the largest massif of gabbroic rocks known in the Scandinavian Caledonides (Fig 2-1). It is
postulated to be a dismembered ophiolite complex (Minsaas, 1981), as no mantle section
or sheeted-dike complex has been identified. The Lyngen Magmatic Complex comprises
the Lyngen Gabbro, the Aksla Volcanics, and the Kjosen Greenschist (Furnes and
Pedersen, 1995). Its minimum age is Llanvirnian-Arenigian (469 +/- 5Ma) (Oliver and
Krogh, 1995), as determined from a tonalite intrusion in the southern part of the Kjosen
Greenschist. The complex has undergone Caledonian deformation, and large low-angle
thrust faults dipping to the west intersect the complex. Hence, there may be some

repetition of units due to tectonic events.
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Location: L
Tromse Noppe yngstuva Legend

Complex

Balsfjord Group

wi/gb Undifferentiated sediments
Lyngen Magmatic Complex
Aksla Volcanics
Volcaniclastics/pillow lavas

P9 | Lyngen Gabbro
A Al Gabbro, basic dikes
Layered gabbro, ultramafics

Balsfjord Group
Granitic rocks Lyngen
B Lyngen Magmatic }Nappe
pird Complex

[ Koppangen Unit

m Lyngen sub
nappe Allochto:
Precambrian
basement

v-vy| Gabbro, pegmatites, dikes
v V|Layered gb.norite
qtz.-bearing gb.norite(Q)/
ultramafics

Figure 1: The general )
geology of the Lyngen Ullsfjord
Peninsula (modified from
Slagstad, 1999). The 7 s
profiles are listed on the { 42 BT
figure. Iddu (N), Strupen ‘ ;

(E), Skaidevarri north of the
Kjosen Fjord, Isskardet
Northwest of Kjosen,
Ellendalen (SW), Goverdalen
to the northeast of the latter
and Veidalen in the
southeastern part of the
Western suite. 4 cross-
sections are also shown,
indicating the steep layering
and folding in the Lyngen
Gabbro. The peninsula is
about 100-km N-S

R
Eastern surte Wesfern suite

Tonalite
Kjosen Greenshist
Undifferentiated greenstone/amphibolites
Pillow lava

Volcaniclastics/sediments
Greenstone and gabbro (vt=varitextured,
P/C/M= pegmatitic, coarse-, medium sized)

% Oceanic shearzone
(Rypdalen Shcar Zone

8 pr Shear and fall direction indicators

a—a Thrust contact

Lyngenfiorden

Koppangen Unit
7 Phyllite
~4—a- Thrust contact

Lyngen sub nappe Allochton

,#* Fault 4 Primary layering/
‘ lamination

~ s Strongly sheared Regional
/"/ rocks/rock contacts fohgation

m.as.l.

1200

/\,/é\ - 600

IN /BN (\‘A' Lo
mas.l.

- 1200

——— - 600
@/M \\ \’ M__._;>B' Lo

as% / L ot
m.as.h

Gove aleaﬁ % , ~ 1800
/

f;‘c’j o 2

‘\'(\\_},x\,

NN

D o
E
N

-~ 1200

/ _ "¢ “\ é I 600




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

The Lyngen Gabbro is, by far, the dominant component of the Lyngen Magmatic
Complex. A gravity profile has shown that the Lyngen Gabbro is wedge-shaped with the
maximum thickness in the west (Chroston, 1972). The Lyngen Magmatic Complex has .
been subdived into a Western and Eastern suite, both trending NNE-SSW, based on
different petrological and geochemical characteristics (Furnes and Pedersen, 1995). The
Lyngen Gabbro contains large shear zones originally named the Rypdalen Shear Zone.
It separates the Western and Eastern suites in places and is accompanied by numerus
variably sized dunite and wehrlite bodies. Later dikes with a wide range of compositions
intersect the Lyngen Gabbro and Rypdalen Shear Zone, leading Slagstad (1995) to
interpret the shear zone to be of oceanic origin. The ultramafic rocks and the crosscutting
dikes are not the subject of this geochemical study, and will only be described as a part of
the general geology. Most of the rocks of the Lyngen Gabbro have been extensively
uralitized and saussuritized (Randall, 1959). ‘

The Aksla Volcanics trend NNE-SSW along a narrow zone ~15 km long and 400
meters wide, in the Southwestern part of the Lyngen Peninsula, near Lakselvbukt (Fig.
1). The rocks are mainly deformed, greenschist-facies pillow-lavas, hyaloclastite
breccias and dikes (Furnes and Pedersen, 1995) of mid-ocean ridge (MORB) to Island
Arc Tholeiite (IAT) affinities (Furnes and Pedersen, 1995). An imbricated slab of
gabbro, up to 600 meters wide, has a sheared, subvertical contact to the overlying
sedimentary rocks in the Balsfjord Group (Minsaas and Sturt, 1985, Kvassnes, 1997).
The gabbro is varitextured and cut by numerous basic dikes and these dikes are
henceforth assumed to be associated with the Aksla Volcanics. The Eastern, sub-vertical
contact between the Aksla Volcanics and the layered and high-level gabbros of the
Lyngen Gabbro trend N-S, and is strongly sheared.

The Kjosen Greenschist outcrops from Strupen southward, defining the
easternmost part of the Lyngen Magmatic Complex. It comprises pillow lavas,
volcaniclastics and undifferentiated greenschists of MORB to IAT affinities (Furnes and
Pedersen, 1995). The rocks of the Kjosen Greenschist are strongly sheared and

deformed.
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Geological setting

The Norwegian Caledonides represent a stack of thin nappes thrust eastwards
onto the Baltoscandian platform in late Silurian/early Devonian time (Dallmeyer and
Andresen, 1992). The four major units are the Lower-, Middle-, Upper- and Uppermost
Allocthon (Roberts and Gee, 1985). The Lower and Middle Allocthons and the lower
part of the Upper Allocthon (Seve nappes) have Baltoscandian affinities. The remainder
of the Upper- and especially the Uppermost Allocthon are exotic terrains thought to have
been derived from spreading-ridges, rifted island arcs and marginal basins lying within
the now consumed Iapetus ocean (Andresen and Stelthenpohl, 1994). These exotic
magmatic complexes can be divided into two groups by U/Pb dating. Group 1 represents
ophiolite complexes of Lower Ordovician (Tremadocian-Arenigian) age and comprises
basaltic rocks with MOR-, IAT-, boninitic-, calc-alkaline- to alkaline affinities. Group 2
has an Upper-Ordovician (Ashgillian) age, defined by the Solund/Stavfjord Ophiolite
Complex, and is predominantly N-MORB, but also contains local occurrences of basalts
with E-MORB affinity (Dunning and Pedersen, 1988). The geochemical evolution of
the ophiolites from the Norwegian Caledonides indicates their association with the
development of island arcs (Pedersen and Furnes, 1991)‘,

The central Troms area, northern Norway, has seven nappes. The lowermost
three are the Dividal Group (autocthon) overlain by the Mélselv/ Kalak Nappe Complex,
all interpreted as the Baltoscandian Margin. Above these nappes are the Vaddas Nappe,
the Kafjord Nappe, the Nordmannvik Nappe, the Lyngen Nappe Complex and the
Tromsg Nappe Complex, are all considered to be exotic terrains relative to Baltica
(Andresen at al., 1985).

The Lyngen Nappe, a part of the Upper Allocthon has been correlated with
Gratangseidet mafic complex in the Ofoten area (S-W) and the Ullsfjord nappe complex
(N-E) (Andresen and Bergh, 1985). Three major lithological units can be distinguished;
from the base, upwards: The Koppangen Formation, the Lyngen Magmatic Complex and
the Balsfjord Group (Fig 1, insert) (Randall, 1959 and 1971(a,b), Munday, 1970 and 1974
and Binns, 1978). The Koppangen Formation is dominated by phyllites, although a
strongly foliated amphibolite zone marks its contact to the Lyngen Magmatic Complex.

The upper Ordovician to Silurian Balsfjord Group is interpreted to rest with a
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stratigraphic unconformity upon the very irregular paleo-topography of the Lyngen
Magmatic Complex (Minsaas, 1981). The Svensby formation, a part of the Balsfjord
Group, has calc-alkaline pillow-basalts (Kvassnes, 1997). In the southwest, the contacts
to the Lyngen Magmatic Complex are all strongly sheared. The group is locally inverted,
but is considered a coherent unit that is getting younger westwards (Andresen and Bergh,
1985).

Sample localities

Seven profiles throughout the Lyngen Gabbro have been sampled in detail. The
areas north of the Kjosen Fjord are the Iddu area in the far north (81 samples, including a
very detailed profile of 12 samples), Strupen in the east (128 samples), and Skaidevarri in
the central part (91 samples). Isskardet is in the west, south of the Kjosen Fjord (24
samples), Ellendalen east of the contact to the volcanics (18 samples), Goverdalen is the
valley to the northeast of Ellendaien (37 samples), and Veidalen is the valley in the
centrai south (40 samples). The Norwegian Chart Service maps 16341V, 1634V, 16331V

and15331 in the series M711 cover the area.

1ddu

Iddu, on Lyngstuva, is the northernmost mountain of the Lyngen peninsula. The
sample area is less than 1-km?® and comprises gabbroic rocks and tonalites cut by basaltic
dikes. Oceanic, amphibolite-grade, shear-zones and Caledonian, greenschist-grade,
shear-zones crosscut the area. In addition, later, possibly Caledonian, high-angle normal
faults crosscut the section.

The tonalites are classified as shear zone-related- or layered tonalites (Moen-
Eikeland, 1999). The layered tonalites, interpreted to be the felsic fractionates of the
original magma, are characterized by large gray-black, lens-shaped, quartz-grain-
aggregates in a groundmass of quartz, plagioclase, and pyroxene. The quartz-aggregates
can be up to 1.5-cm in size and their orientation follows the layering. The shear zone-
related tonalites, interpreted by Slagstad (1995) to be the result of anatectic melting of
amphibolized gabbro, are fine-grained and consists of plagioclase, quartz, pyroxene and

amphibole.
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The gabbroic rocks are subdivided into massive and laminated gabbro,
varitextured leucogabbro and gabbroic pegmatites (Moen-Eikeland, 1999). Massive and
pegmatitic gabbros occur together. The massive gabbro is fine-grained with plagioclase,
two pyroxenes, amphibole, and magnetite. Coarser patches often show larger grains of
magnetite. The gabbroic pegmatites have plagioclase, pyroxenes, amphibole, magnetite,
and quartz and the grain-sizes vary from 1- to 15-cm. The laminated gabbros are

composed of plagioclase, pyroxenes, amphibole, and some quartz.

Strupen

The area consists mainly of layered, gabbroic rocks that frequently contain quartz
as a cumulate mineral. Five major gabbroic rock types have been described (Hetland,
1996). Stratified layers (Type 1) grade from leuco- to melagabbro, exhibiting grain-size
lamination, non-oriented cumulate clinopyroxene, and 5-10-cm long clinopyroxene-
lenses oriented parallel to the layering. The oxide-rich gabbroic layers (Type 2) with
plagioclase-rich horizons have unusually sharp contacts with the adjacent layers.
Stratified, oxide-rich gabbroic layers (Type 3) have increasing amounts of oxide
upwards. Oxide and quartz-bearing gabbroic layers (Type 4) comprise distinctive
lamination defined by quartz grains oriented parallel to the layering. Tonalite (Type 5)
are found as to five to six-meter thick layers. The latter rock type often occurs above the
oxide-rich layers, and tends to inter-finger with them. The quartz bearing gabbroic rocks
are unique and characteristic features of the Eastern suite, although the volume of these
rocks does not exceed 5% in the section. The profile sampled is 95-m long, and has been

sampled perpendicular to the layering.

Skaidevarri

This 160-m transect is an east-west profile along the south side of Skaidevarri.
The rocks range from troctolitic gabbros through olivine-gabbros, gabbros, olivine-
gabbronorites, olivine-oxide-gabbros and oxide-gabbros. The rocks are mostly uniform
with some fine, near-vertical layering in places. The sampliﬁg was done perpendicular to
the layering. Some of the gabbros have undergone greenschist-facies metamorphism,

with saussuritized plagioclase, iddingsitized olivine, and clinopyroxene partly altered to
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green amphiboles with only small amounts of relict clinopyroxene. The alteration grade
ranges from 10-100%. The fresh rocks show poikilitic pink clinopyroxene, brown
hornblende, and sometimes plagioclase occurs recrystallized or as inclusions in
clinopyroxene. In fact, the magmatic minerals all have inclusions of the others minerals

in them, suggesting a complex magmatic history.

Isskardet

The area consists of gabbro showing pronounced compositional layering that is
steeply dipping and strikes N-S and perpendicular to the valley. The layering is typically
of 5-10 meter scale with smaller scale (10-50 cm) layering locally superimposed. The
larger scale layers can be traced laterally for 1-2 km across the valley. The rocks are
generally medium to fine-grained with granulitic textures, with appearances similar to
those of Skaidevarri. They range from olivine-gabbros to oxide-gabbronorites, and no

tonalites have been sampled.

Ellendalen

This valley is described in the westernmost profile in figure 2-2. An imbricated
gabbro-slab west of the Aksla Volcanics is composed of high-level varitextured and
massive gabbros cut by mafic dikes. The dikes trend N-S, with a 60° and 80° dip to the
west. At Lakselvdalstindane, the northern wall of Ellendalen is dominated by layered
gabbros folded in a large drag-synform with an N-S trending fold-axis dipping 40° to the
north (Randall, 1959). The layering can be followed for at least 2200 meters along the
mountain scarp and can be observed from 300 to 1400 meters above sea level. The
sequence in this mountain may therefore represent 850 meters of layered gabbro. At the
innermost part of Ellendalen, an up to 1-km wide, sub-vertical, N-S trending
anastomosing shear zone caused a large antiformal drag-fold to form in the layered
gabbros. Isotropic and varitextured gabbros have been found in the lower part of these
mountain-scarps, where sampling ended. The gabbroic rocks have, in general, undergoné
greenschist alteration, and magmatic minerals have not been recovered except for rare

cores of clinopyroxene.
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Goverdalen

Following the shearzone northwards to Goverdalen, high-level gabbros continue

into layered gabbroic rocks that can be followed eastwards through the valley and

towards the Goverdalen Lake (Fig. 2-1 and 2-2). The gabbroic rocks of the Southwestern

part of Mt. Nallangaisi host plagioclase-free wehrlite bodies close to the shear-zone. The
steep walls of the valley display layered gabbros, and the shear-zone outcrops on the
valley floor, displaying anatectic tonalites crosscut by inferred oceanic dikes (Selbekk,
1995, 1998). East of the shear-zone, layered and laminated gabbros were sampled
towards the Goverdalen Lake. The rocks are generally two-pyroxene gabbros, and
olivine is mostly absent. A very small outcrop of wehrlite was found. The most evolved
gabbros are rich in magnetite and ilmenite. The rocks have frequently undergone

greenschist alteration, and epidosites have been found in the west of this valley.

Veidalen

'East of the Goverdalen-lake, a very complicated layered sequence of wehrlites
and gabbros outcrop. The layering appears to be deformed at a late magmatic stage, with
multiple ductile folds, dunite pods and flame-structures. The gabbros are very fine
grained, and plagioclases so dark that the rocks appear to be pyroxenites in outcrop.
Some of the gabbros have high-Ca garnets and blue amphibole. The sequence looks
similar to the Middle Series of the Rum layered intrusion on the Western coast of
Scotland where it has been interpreted to represent the feeding zone for the intrusion
(Emeleus et al., 1996).

Mt. Balggesvarri, to the north of this valley, is dominated by layered gabbros, and
the anastomosing shear-zone causes the layering to be folded into a synformal drag-fold.
At the foot of the mountain, a large low-angle, westward dipping thrust-fault intersects
the gabbro and an ultramafic body outcrops at the Eastern top. Entering Veidalen, an
approximately two kilometer thick sequence of laminated meta-gabbro cut by basic and
intermediate dikes can be followed towards the Rypdalen shear-zone (Selbekk, 1998).
Within the shear-zone a large ultramafic body of wehrlite and dunite (2 km long and 0.5

km wide) outcrops from Sydbreen in the north to Veidalsvatnet in the south. A smaller
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Westerr; suite Eastern Suite.

Ellendalen Goverdalen Veidalen KG

Fig. 2-2: The three areas sampled in the southern part of the Lyngen Gabbro, Ellendalen, Goverdalen and
Veidalen, represent a composite cross-section through the Western suite. The profile is drawn to scale and
is about 10-km long as the crow flies. Yellow=The sedimentary Balsfjord Group; green=Aksla Volcanics;
orange = Western suite of Lyngen Gabbro, with lines = layering in the gabbro, with hatches=varitextured
gabbro; brown=Eastern suite of the Lyngen Gabbro; tan=Rypdalen Shear Zone; red=Kjosen Greenschist;
purple=ultramafic rocks; tagged lines=low-angle thrust-contacts; barbes=high angle shear zones.
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Fig. 2-3: Major element compositions of gabbroic whole-rocks sampled from seven different areas in the
Lyngen Gabbro. Figures A, C, and E show Harker diagrams for the Western suite, and B, D, and F the
Eastern suite, respectably. Iddu has been separated into Iddu-1, the general sampling of the area, and Iddu-
2, a detailed transition. The inserts in E (Ellendalen) and F (Iddu 2) show the difference between the two
suites. The gray fields in A, C and E indicates the field for the South West Indian Ridge.
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body of dunite is also seen below the small glacier in Nallancohkka south of
Veidalsvatnet.

From the middle of Veidalsvatnet and eastwards into Veidalen and Gaskacéhka
quartz-bearing gabbros and quartz-rich tonalites typical of the Eastern suite of the Lyngen
Gabbro appear. There are no geochemical data from this part of the section. The Kjosen

greenschist outcrops at the Eastern side of Mt. Njallavarre.

Methods

Whole rock analyses

Major and trace element analyses were performed at the University of Bergen.
Fist size samples were crushed in a jaw crusher, and 80-100 cm’® were crushed to powder
in an electrical agate mortar. The glass bead technique of Padfield and Gray (1971) was
used for the major elements analyses and pressed-powder pellets for the trace elements
analyses, using international basalt standards with recommended or certified values from
Govindaraju (1994) for calibration. The analyses were carried out on a Phillips PW 1440
X-Ray fluorescence spectrometer. Instrumental precision for the major and trace
elements for the glass-bead and pressed powder pellets have been documented by
repeated analyses of representative samples. The relative standard deviations are close to
100% for low concentrations of the elements Zr, Y, Nb and P,0;. The whole-rock
analyses are presented in Table 1.

Rare earth elements (REE), thorium, and tantalum have been analyzed at the
Department of Earth Sciences, Memorial University of Newfoundland, Canada by
inductively coupled plasma mass-spectrometry (ICP-MS). Analyses of international
standards show that the relative uncertainties are better than 3% for Sr, Ba, Zr and the
LREE, between 3 and 7% for Rb, Nb, Sc and HREE, and 10% for Ta and Th (Jenner et
al., 1990). The data are presented in Table 1B.

Mass spectrometry analyses
73 samples have been measured for Sm and Nd-isotopes on a Finnegan MAT 262,

9-collector, fully automated mass spectrometer (MS) at the University of Bergen. All
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chemical processing were carried out in a clean-room environment with HEPA filtered
air supply and positive pressure. The reagents were either purified in two-bottle Teflon
stills or passed through ion-exchange columns. Samples were dissolved in a mixture of
HF and HNO,. REE were separated by specific extraction chromatography using the
method described by Pin ef al. (1994). Sm and Nd were subsequently separated using a
low-pressure ion-exchange chromatographic set-up with HDEHP coated Teflon powder
(Richard et al. 1976). Sm and Nd were loaded on a double filament and analyzed in

multidynamic mode. Nd isotopic ratios were corrected for mass fractionation using a

. *Nd/'**Nd ratio of 0.7219. Sm and Nd concentrations were determined using a mixed

'*Nd/"“Sm spike. Repeated measurements of the JM Nd-standard yielded an average
"“Nd/"*Nd ratio of 0.511113 = 15 (20) (n = 62). The typical Nd blank level in the
laboratory is 5pg. The results are listed in Table 2.

Mineral analyses

Major element analyses of clinopyroxene, orthopyroxene, plagioclase, and olivine
have been performed using an ARL-SEMQ electron microprobe at the Nordic
Volcanological Institute, Iceland. The microprobe analyses reported here are
representative single-point analyses. All analyses were done with focused beam (2 um in
diameter). The analyses were performed with a beam potential of 15 kV, sample current
of ~15 nA, 4 seconds counting times for peak, and MAN (mean atomic number)
corrections for background. Standards used were basaltic glasses. Chemical analyses of

clinopyroxene, orthopyroxene, plagioclase, olivine and ore-minerals of 79 additional

samples were carried out at the University of Bergen. These were done as standardless

EDS-analyses on a scanning electron microscope (JEOL scanning microscope, JSM-
6400), using the Tracor Northern energy dispersive analysing system (TN 5600), with a
20 kV beam. A final set of mineral analyses was made on an ARL-SEMQ electron
microprobe at the University of Bergen. All analyses were done with a defocused beam
(10 um in diameter). The analyses were performed with a beam potential of 15 kV,
sample current of 10 nA, 40 seconds counting times for peak and 10 seconds for

background (MAN (mean atomic number) background correction for Si, Ca, Al and Fe).
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Standards used were basaltic glasses, minerals, and metals. The results are listed in Table

3.

Ion-probe analyses

Three samples were selected from Goverdalen and Veidalen, representing the
geochemical spectrum of plagioclase-bearing rocks in the areas. Four samples were
selected from Strupen, representing four of the rock types spread out in the lower half of
the profile. Unaltered cores and rims of clinopyroxene from these rocks were analyzed
on the CAMECA IMS 3f ion probe at Woods Hole Oceanographic Institution using the
methods of Shimizu and Hart (1982). A primary beam of O- ions was focused to ~20um
for REE (La, Ce, Nd, Sm, Eu, Dy, Er, Yb) and ~10xm for other trace elements (Ti, V, Cr,
Sr, Y, Zr). Molecular interferences were eliminated by energy filtering and a secondary
voltage offset of ~30 to —60V for the REE and -90 for the other trace elements.
Uncertainties based on counting statistics were 5-10% (10) for REE and 1-5% (10) for

the other trace elements. The data is presented in Table 4.

Mobility of elements

The rocks of the Lyngen Gabbro have been exposed to several metamorphic
events, ranging from lower greenschist-facies to upper amphibolite- and possibly
granulite-facies metamorphism. Several studies have investigated how elements are
leached or enriched due to metamorphism of magmatic rocks. Cann (1977) and Coish
(1977) investigated the mobility of different elements during sea-floor metamorphism,
concluding that Ti, P, Y, Zr, Nb, Cr, and Ni are stable during greenschist-facies
metamorphism. Shervais (1982) showed Ti and V to be stable under a wide range of
metamorphic conditions, ranging from sea-floor metamorphism to granulite facies
metamorphism. Elliot (1972) investigated gabbros that occur as isolated masses within
amphibolites, and concluded that TiO,, FeO', MgO, MnO, and Na,O and possibly AL, O,
were stable during amphibolite facies metamorphism. Weaver and Tarney (1981)
analyzed mafic and ultramafic dikes cutting retrograded dikes, comparing dikes exposed
to varying degree of metamorphism to fresh dikes. They concluded that Nd, P, Hf, Zr, Ti

and the middle to heavy REE’s are immobile even during strong metamorphism with
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access to fluids. An investigation of gneisses from a mylonitic shear zone shows that
Si0,, K,0, Na,0, FeO, and CaO are mobile when fluid phases are present (Sinha et al.,
1986).

In general, it is difficult to determine whether an element is mobile or not, and
whether it will be enriched or depleted during alteration and metamorphism. However,
the above studies have shown that Zr, Y, P, Nb, Cr, Al, Ti, V and the REE will be
relatively stable during the metamorphic conditions shown to be present along the
composite cross-section. The ratios between these elements will hence be an accurate
way to compare the rocks. MgO and FeO' concentrations are also stable in the gabbros at
higher metamorphic grades. As Sr is unstable during alteration, no Sr isotopic analyses

have been attempted.

Results

Major elements

The gabbroic rocks from the Western suite of the Lyngen Gabbro are, in general,
very low in silica (Fig 3) and large sections can be defined as ultrabasic (<45% SiO,).
Very few samples from profiles that were analyzed from the Western suite have higher
than 50-wt% SiO,, and the average is 45.5 wt%. The Eastern suite follows a SiO,
enrichment trend resulting in tonalites as the most evolved rocks. However, less than 5%
of the rocks of the Eastern suite are high-silica differentiates. The AL, O, contents in the
Eastern suite are highest for the rocks with the lowest SiO, contents, reflecting the
importance of calcic plagioclase as a cumulate mineral. The highest Al,O, contents are
found in the rocks with the highest SiO, in the Western suite. Na,O varies from traces to
4 wt%, but there is no clear correlation between SiO, and Na,O in the Western suite,
whereas the sodium-content increases with SiO, in the Eastern suite. K,O and P,O; are
extremely low, and rarely exceed 0.1 wt%.

As the SiO, contents behave so differently between the suites, the degree of
differentiation is explored using Mg#’s (100* MgO/(MgO+FeO)) in wt-%.) The trend of
decreasing SiO, with increased differentiation is evident in the Western suite (Fig 2-4 A

and B). The rocks of the Eastern suite partly indicate this trend, even if the most evolved
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Fig. 2-4: Whole-rock Mg# (100*MgO/(MgO+FeO*) (FeO*=all Fe as FeO)) is plotted vs. Si0,, CaO and
TiO, for the Western (left) and Eastern (right) suite. Note how the SiO, content in the gabbros correlates
with Mg# which is the opposite of that of basalts (gray line). In the Eastern suite, the fractionation of
magnetite causes the SiO, to increase.
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Figure 2-5: Whole rock Mg# (wt%) vs trace elements for the Western (left) and Eastern (right) suite. See
text for detailed descriptions.
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rocks show increased SiO, levels and rocks from Iddu show early SiO, enrichment (at
Mg# 45).

The CaO (Fig 2-4C and D) contents decrease gradually during fractionation in the
Western suite. However, the Eastern suite, and in particular the Strupen profile, shows
near constant CaO-levels until the onset of SiO, enrichment.

The TiO, contents are dramatically different between the two suites (Fig 2-4 E and
F). The Eastern suite shows few rocks with TiO, higher than 1 wt%, whereas the
Western suite has up to 3 wt% in the most SiO,-poor rocks. The TiO, trends indicate
enrichment with decreasing Mg#’s for both suites. At around Mg# 30, the TiO, levels
drop off for the Eastern suite, whereas they increase steeply for the Western suite,
indicating that the evolved, iron-rich, melts precipitated iron-titanium oxides within the

cumulates.

Trace elements

The trace elements partly reflect what is observed in the major elements. It
should be noted that many of the incompatible elements like Zr and Y are very close to
the detection level of the XRF-method, especially in the Eastern suite.

Figure 5 demonstrates vanadium levels with similar patterns as the TiO,, although
V indicates the presence of oxide-minerals in the Eastern suite as well as the Western
suite. The V contents do, however, decrease suddenly at lower Mg#’s for the Eastern
suite, possibly indicating melt-mineral segregation leaving oxide-minerals in the
cumulate. In addition, the Cr concentrations are similar between the two suites but
become much lower with fractionation in the Eastern suite than in the Western suite. The
Sr contents show little in terms of a differentiation trend for either suite, but the
concentrations are highest for the profile at Iddu.

Sm and Nd contents were measured by isotope dilution (Figure 2-6 and 2-7A). The
trace elements are highest in the Western suite, where they show some correlation with
Cr or Mg#. The Eastern suite has concentrations below 1ppm, and shows little

correlation with either Cr or Mg#.
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Fig. 2-6: Whole rock analyses of the Lyngen Gabbro. Symbols are the same as for Fig. 2-5, and
in addition, the grey squares which represent the lower 50 meters from Strupen. Note the
generally low contents of the incompatible trace elements in for the Eastern suite, whereas the
Western suite has higher trace element concentrations that increase with differentiation.
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Figure 2-7: Sm-Nd element and -isotope systematics of the Lyngen Gabbro and associated dikes. (A) The
correlation between Sm and Nd concentrations in the Western and Eastern suite. (B) The eNd (t=480-My)
values generally fall in two groups, and the mafic dikes are present in both fields. (C) The isochrons for the
two suites. (D) The eNd (t=480-My) for some of the dikes and felsic intrusives.
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Nd -isotopes

The €yq¢-130my Values for the profiles are shown in Figure 2-7. The profiles from
Ellendalen, Isskardet, and Goverdalen have the highest values, around +6 (Fig. 2-7B). The
Strupen samples and samples from the detailed profile at Iddu fall around +4. Veidalen
samples fall in-between, whereas the Skaidevarri-profile shows values from both groups.
The data plotted on an isochron-diagram indicate different initial values (€, is +6.39
and +3.95 respectively) (Fig. 2-7C). The dikes that cross both suites and Rypdalen Shear

Zone have €y, values similar to the Western and Eastern suite. Some of the dikes and
shear-zone related tonalites from Iddu have negative €y, values that become extremely

low with differentiation (Fig. 2-7D) indicating AFC-processes (DePaolo, 1981).

Mineral analyses: major elements

Figure 8b shows a plot of Mg# of clinopyroxene vs. An% of plagioclase in all the
areas of this study (Mg#=100*molar Mg/(Mg+Fe)). 'The Easternmost profile, from
Strupen, has two groups, above and below 50 meters. Plagioclase Any,q, coexists with
Mg# 82-69 augite and Mg# 56-73 orthopyroxene. The upper half of the profile indicate
the highest An contents of plagioclase found in the entire Lyngen Gabbro, and the lowest
Mg#’s of clinopyroxene from the site. The lower half of the profile has clinopyroxene
with Mg#’s as high as 82, but these also have An% above 90. The more An-rich trend in
the upper half of the profile correlates with tonalites appearing in the layered gabbro
sequence.

The next profile towards the west is Veidalen, with primitive rocks and An%’s in
the higher eighties and into the 90°s. The profiles in Veidalen show similar An contents
to Strupen coexisting with higher Mg# augite (88 to 72). This profile is also associated
with the aforementioned layered peridotites, which have augite Mg#’s up to 92 and Fog,
olivine. West of this geochemical transition-zone, Goverdalen gabbros have Ang, .,
plagioclase, while their augites change from Mg# 84 to 67. The olivines and
orthopyroxenes follow similar trends (Fig. 2-8B and C).

The rocks of the Skaidevarre area have some plagioclase as high as Any, although

the majority of the plagioclases are approximately Ang,, coexisting with Mg# 86-75
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Fig. 2-9: Trace element data for clinopyroxene as measured in siru by the ion-probe. The cores (filled
symbols) and rims (open symbols) of individual crystals are connected with a line. See text for detailed
description.
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augite, Mg# 68-79 orthopyroxene and Foy 45 olivine. The Easternmost rocks are the most
primitive cumulates, and have plagioclase An,q. The rocks westwards of these are more
evolved cumulates, although they do not fall below Mg# 70 together with plagioclase of
An_g. Isdalen rocks have cumulates that are similar to Goverdalen and the evolved
Skaidevarre.

The rocks from Iddu vary greatly with regards to the plagioclase compositions
(Ansg5) With a near constant composition of augite and orthopyroxene, and have no

olivine together with plagioclase.

Mineral analyses: trace elements

Data from three areas, Goverdalen, Veidalen and Strupen, are shown in figures 2-9
and 2-10. Fig. 2-9 indicates that the fractionation-trend for each area is different. Rocks
analyzed from Goverdalen and Veidalen have a general positive correlation for the
incompatible elements. Strupen appears to have a very different distribution, however.
Figure 2-10, indicate that the REE become more LREE/HREE depleted as the minerals
become more evolved. There are no systematics regarding core-rim analyses, in fact,
reverse zoning is common. The augites from Goverdalen and Veidalen develop negative
Eu anomalies with differentiation, those from Strupen does not. The anomalies are
absent in the most primitive rocks but are well developed in the evolved rocks, indicating

closed system fractionation of plagioclase.

Discussion

Significance of the contrasting differentiation paths for the Eastern and Western
suites

It is possible that the magmas that produced the Western suite and Eastern suite of
the Lyngen Gabbro had different water-contents and/or had different mantle-sources. We
have explored activity of water and source-affinity using the An%(pl)-Mg#(cpx) plot
which distinguish the gabbroic rocks precipitated from a hydrous magma from a dryer
one by the arc of the trend (Fig. 2-8A). Dry fractionation of basaltic melt produces a

convex trend whereas those for crystallization of wet melts are concave.
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Fig. 2-10: REE patterns of gabbroic augite cores (filled symbols) and rims (open symbols) Strupen,
Goverdalen and Veidalen. The REE data are normalized with relative abundances of C1 chondrite (Anders

and Grevesse, 1989)
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The presence of water suppresses the plagioclase-olivine cotectic relative to the
plagioclase-augite cotectic (Gaetani et al., 1993) and changes the reaction series to augite
and even orthopyroxene crystallization before plagioclase. In addition, a melt may gain

or loose water so that KdS:" changes, resulting in higher or lower An% plagioclase,

respectively (Housh and Luhr, 1991). The effect is even more pronounced in silicic
magmas (Arculus and Wills, 1990) and may cause An,s for more than 50% of the
fractionating gabbros preceded by true ultramafic cumulates. Early fractionation of
clinopyroxene before plagioclase results in a significant drop in Mg-content in the
magma at a more rapid rate than if plagioclase was crystallized in concert with olivine
only. Moreover, prevalent water variably depresses the liquidii and solidii of the silicic
minerals, whereas there is little effect on the oxide-minerals in magmas (Gaetani et al.,
1993). The bend of the gabbro-trend produced by wet magma fractionation is caused by
the onset of oxide fractionation. The rocks from the Western suite of the Lyngen Gabbro
have this convex trend, similar to the Upper Gabbro from Troodos (Fig. 2-8B). Oxide
minerals are common in primitive gabbros of both suites. The early oxide crystallization
and fractionation is particularly pronounced at Iddu (Moen-Eikeland, 1999). The Iddu
gabbro-compositions, however, are less systematic and range from the Izu-Bonin Arc to
the field of Mid-Atlantic Ridge (MAR). The Eastern suite of the Lyngen Gabbro has
rocks that have abundant quartz, coexisting with extremely An-rich plagioclase, two
pyroxenes and magnetite, and the mineral-compositions are similar to the Lower Gabbros
from Troodos (Fig. 2-8B). Overlapping with this trend are the Lesser Antilles lower crustal
xenoliths, which Arculus and Wills (1990) demonstrated crystallized under hydrous
conditions in a relatively silicic magma.

Dryer oceanic magmas, where plagioclase reaches the liquidus before
clinopyroxene, experience a slower fractionation of Mg/Fe from the magma relative to
Ca/Na in part because Ca is not depleted by augite-fractionation at an early stage. In

addition, Kd$2*~1 (Grove et al., 1992), and therefore reflect the Ca/Na ratio of the melt
more directly. The vertical displacement of the curve varies with the Ca/Na and Mg/Fe

of the parental melt (Fig. 2-8A). For instance, Mid-Cayman Rise gabbro compositions are

similar to those from the South West Indian Ridge whereas gabbros from the Kane
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Fracture Zone region of the MAR where the Ca/Na is lower and Mg/Fe is higher,
have lower An% plagioclase at a given Mg# of augite (Fig. 8B).

Increasing pressure lowers Kd$i® and leads to the formation of a lower An%

plagioclase (Panjasawatwong, et al., 1995). In addition, the pressure depresses the
plagioclase-olivine cotectic relative to the olivine-clinopyroxene cotectic, and the Ca-
Tschermak-component of the clinopyroxene increases (Gaetani et al., 1993). The result
of fractionation at high pressures lead to ultramafic rocks with high-Al augite, followed
by gabbroic cumulate with a convex trend, plagioclase starting at relatively low An-
contents. Plagioclase-free wehrlites are common in the Western suite (Kvassnes, 1997),
and cumulative, plagioclase-free harzburgites and lherzolites are found in the Eastern
suite (Hetland, 1996). However, the high An% plagioclase and the concave
fractionation-trends indicate crystallization from wet melts at relatively low pressures.
We used Melts 5 (Ghiorso and Sack, 1995) to estimate fractionation-trends for the
rocks from this study (arrows 1-3 in figure 2-8A). A primitive MAR melt extracted from
PetDB was used as an initial composition and partly reproduced fractionation-trends for
Goverdalen and Skaidevarri by adding water to the melt at low crustal pressures (1-kbar)
(arrow 1). The dry fractionation may therefore replicate some of the gabbros at Iddu. It
has been argued that these calculations may be questionable for the Melts program (Yang
et al, 1996). On inspection, the high Kd$i values are comparable to those of hydrous
melts (Housh and Luhr, 1991), and the partition-coefficients for the mafic minerals are
reasonable. However, the addition of water to MAR-type melts or crystallization at
higher pressures cannot reproduce the Strupen trend, as the Ca/Na of the melt is too low.
The fractionation trend of the Stupen gabbros can, however, be reproduced by water-
éaturated crystallization of a dike (€yyu0my) Of 4.1) that cross-cuts the Western suite in
Goverdalen (sample 95LY71 as shown by arrow 2 in figure 2-8A). The difference between
the upper and lower half of the Strupen profile can be explained by the addition of just a

little more water to the magma that produced the upper half.

Parental magma compositions

We have adapted Shervais’ (1982) TiO,-V tectonomagmatic discrimination-

diagram for basalts to accommodate our gabbroic rocks and have compared our whole-
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Fig. 2- 11: A: Discrimination diagram from Shervais (1982) for whole-rock analyses of dikes (black
squares) and pillowlavas (open squares) of the Aksla Volcanics, and mafic dikes that crosscut the gabbros
(gray squares). The dike used for Eastern suite Melts model is 95LY71. B: TiO, vs. V for the Western
suite. Fields are Tk: Talkeetna (Kelemen & Hanghoj, unpublished data), Oman (Korenaga and Kelemen,
1997)) SWIR=South West Indian Ridge (Coogan, 2000). Symbols are the same as in Fig 5. Note the wide
variation from Ellendalen (black squares) to Veidalen (open circles). C: The same diagram for the Eastern
suite. The correlation for Isskardet, representing the most refractory part of the Western suite, is shown for
comparison.
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rock analyses to known sites. The Ti/V-ratio provides constraints on the
tectonomagmatic conditions for the primary magmas, as both TiO, and V follow the
same magmatic processes. The source of the Eastern suite must have been derived from

a more depleted mantle source than the Western suite, but the transition between the
suites is gradational in the south (Fig. 2-11B and C). Most of the Aksla Volcanics dikes
and pillow-lavas, however, are similar to thosc? in oceanic ridge settings, whereas the
dikes that crosscut the gabbros are more varied (Fig. 2-11A).

The REE-melt composition has been calculated using partition coefficients for the
selected augite from Goverdalen, Veidalen and Strupen (Figure 2-12). The result is
compared to N-MORB, IAT (Sun, 1980), the Aksla Volcanics (Furnes and Pedersen,
1995), boninites (Hickey and Frey, 1982) and Troodos lavas (Taylor and Nesbitt, 1988).
The result supports that Goverdalen gabbros and Veidalen gabbros may have crystallized
from magma similar to the Aksla Volcanics or an N-MORB seeing that their REE
patterns are parallel. The Strupen augites, however, are very low in LREE/HREE and did
not crystallize from “normal” boninitic magmas, but from ultra-depleted magmas not
enriched in LREE, similar to boninitic lavas from Troodos. However, most boninitic
lavas from Troodos have LREE enrichment and a U-shaped pattern (Taylor and Nesbitt,
1988). Like the Troodos magmas, the augites from Strupen indicate trends that are not
parallel, suggesting source-evolution or crustal contamination (DePaolo, 1981). The
patterns cross as the rocks become more evolved, suggesting that the chemical signature

of the profile changes at about 50 meters above the base.

Temporal and spatial relations between the Western and Eastern suite

The gabbros in the Eastern suite uniformly have lower €y, values than the
Western suite and each suite follows separate, but parallel isochrons (Fig. 2-7), suggesting
similar ages of the suites. Therefore, the parental magmas must have had different and
relatively homogeneous compositions before emplacement. Slagstad (1995) and Selbekk
(1998, 2002) suggested that the oceanic Rypdalen Shear Zone generally separates the two
suites and there are several sites in the northern half of the Lyngen Peninsula that clearly

supports this. However, in Skaidevarri the profile starts with low €y, values and An-rich
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Figure 2-12: Each of the trace element mineral analyses has been recalculated to melt-compositions by usin
Kd’s for clinopyroxene (Arth, 1976). MORB, IAT (Pearce, 1980), Aksla Volcanics (Aksla Volcanics,
Kvassnes, 1997) and Boninites (Walker, 1983) and Troodos (Group 3) (Kostopoulos and Murton, 1992) are
compared to Strupen, Veidalen and Goverdalen. See text for further explanation.
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plagioclase in the east. The trend changes over less than 10-m into higher €y, values and
reduced plagioclase An% contents, whereas the Mg#’s of mafic minerals remain mostly
unchanged. Since the most primitive rocks are those with low €y, it is not likely that the

magma was contaminated by AFC-processes, and we suggest that the Skaidivarre-profile
was sampled across a magmatic transition between the two suites. The layered series has
no intrusive or tectonic contacts, indicating that the two magmatic systems coexisted. In
Skaidivarre, the gabbros are cut by the Rypdalen Shear-Zone further to the west than the
contact between the suites. It is therefore unlikely that the Rypdalen Shear-Zone caused
the boninites to be emplaced together with the tholeiites, but rather that for some parts of
the complex magmatism was concurrent and that the rest of the complex was produced
with close proximity between the suites.

Several dikes crosscut the gabbros. On the basis of €y, the mafic dikes represent

magma from both suites. However, some of the felsic dikes that crosscut the gabbros
have negative values, indicating enriched material either through assimilation or by
source enrichment (Fig. 2-7D). These dikes have not been dated, and it uncertain if they

were intruded at a later stage.

Plate Tectonic Affinity and comparison to other sites.

Boninites are generally believed to be derived from a peridotitic source after MORB
extraction (Crawford ef al., 1989; Kelemen et al., 1990) and frequently show a LREE
enrichment causing a U-shaped pattern. However, there are several categories of
boninites, Low-Ca (3 types) and High-Ca boninites and the Eastern suite represents high-
Ca type boninite as seen in the extremely An-rich plagioclase. Although the augites from
the Eastern-suite gabbro do not reflect the U-shaped REE-pattern often seen in boninites,
the cumulates are clearly crystallized from a hydrous, ultra-depleted magma while having

lower €y, values than the Western suite. The Western suite gabbros were also

crystallized from a hydrous magma, although the corresponding upper crustal material
reflects tholeiites like those from Mid-Ocean Ridge type magmatism, making us conclude
these are island arc tholeiites. In addition, the two suites were emplaced concurrently

with a gradational transition between them in the south.
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It has been known for some time that a back-arc type, and arc and fore-arc (supra-
subduction zone) type magmatic rocks occur in ophiolites. For example, Schouten and
Kelemen, (2002) demonstrated that the lower (tholeiitic) and upper (boninitic) lavas in
the Troodos Ophiolite are related to the Upper and Lower Gabbros, respectively, and they
argue that the systems were contemporaneous. Taylor and Nesbitt (1988) showed REE-
patterns that cross for the Troodos Upper Lavas, and Cameron ef al. (1983) points out
that the trace-element and isotope affinities between the Upper and Lower Lavas are so
different that they must have had different magma sources.

Present-day systems, like the Izu-Bonin arc in the Southeast Pacific, comprise an
outer-arc high, a boninitic fore-arc, an arc section and an actively spreading back-arc
basin (Crawford et al., 1981; Taylor et al., 1992). It is less common to find coexisting
back arc, arc, and fore-arc basin magmatism obducted in the same ophiolite (Taylor et al.
1992). In fact, there is no typical silicic or calk-alkaline arc-magmatism in the Lyngen
Magmatic Complex, though an arc-section is present in the similar-age ophiolites in
southern part of Norway (e. g. the Karmgy Ophiolite of Pedersen and Hertogen, 1990).
Taylor et al. (1992) suggested that the tectonomagmatic conditions that produce boninites
and tholeiites together is currently not active in the oceans today. It is often suggested
that coexisting tholeiitic and boninitic magmatism is the result of incipient arcs, and part
of the early arc of the Izu-Bonin arc is currently the outer-arc high. ODP-site 458,
situated on the outer-arc high between the Mariana trench and -ridge (Hickey-Vargas,
1989) did find contemporaneously emplaced back-arc basin tholeiites and high-Ca
boninite lavas. They suggest that the boninite parent-magmas were generated by high
degrees of melting of a moderately depleted lithosphere residual from generating
Philippine-sea MORB, and that hydrous melting at greater depth, possibly within the
asthenosphere, generated the tholeiites. The close proximity to the trench make the
oceanic crust more likely to be emplaced into the deeper levels on an orogenic belt,
preserving them during erosion and orogenic collapse. The Svensby Formation, a part of
the Balsfjord Group overlying the Lyngen Magmatic Complex, has calc-alkaline pillow-
basalts dismembered from other arc rocks. It is possible that the closure of the large

TIapetus Ocean may have caused several slivers of the supra-subduction zone to be
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obducted onto the continental margin, preserving only the Lyngen Magmatic Complex in

this part of the Scandinavian Caledonides.

Conclusion

The Lyngen Gabbro represents the lower crustal section of an incipient arc or outer-arc
high of an Ordovician oceanic supra-subduction zone. The Western suite was
precipitated from magma that could have been derived from the same system as the
associated Aksla Volcanics and Kjosen Greenschist. This primary magma was derived
from a source similar to that of mid-ocean ridges, although hydrous crystal-fractionation
suggests that the tectonomagmatic setting was an island-arc tholeiite produced at
spreading-ridge with fluids derived from the subducted slab. The Eastern suite comprise
cumulates that were crystallized from magmas similar to those of the ultra-depleted
magmas of fore-arcs. Although the volcanic counterpart of the ultra-depleted Eastern
suite has not been found, dikes crosscutting the gabbros may represent the magma that
formed them. The oceanic Rypdalen Shear Zone generally separates the two suites, but
non-tectonic transitions from boninitic to island-arc tholeiitic affinities suggest the

magmatism happened concurrently.
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Evolution of Oceanic Gabbros: In-situ and Ancient Examples
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Evolution of Oceanic Gabbros
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Evolution of Oceanic Gabbros
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: In-situ and Ancient Examples

Evolution of Oceanic Gabbros
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Evolution of Oceanic Gabbros: In-situ and Ancient Examples

Table 2: Isotope chemistry for the Lyngen Gabbro. In addition to data from each area, dikes crosscutting the
gabbros in Goverdalen and at Iddu are included for comparison.

1Ng MNd Initial "“*Nd 850y
Sample Sm (ppm) Nd(ppm) '“Sm /*“Nd '*Nd/“Nd  CHUR /"“Nd E_CHUR CHUR
Skaidevarri
90-LY-134 0.21 0.46 0.284 0.513055 0.51203 0.512162 7.962 2.60
90-LY-135 0.19 0.40 0.280 0.513117 0.51203 0.512236 9.162 4.05
90-LY-137 0.16 0.28 0.332 0.513374 0.51203 0.512330 14.178 5.89
90-LY-139 0.11 0.18 0.374 0.513511 0.51203 0.512335 16.862 5.99
90-LY-140 0.13 0.21 0.362 0.513472 0.51203 0.512335 16.096 5.99
90-LY-141 0.35 0.74 0.286 0.513259 0.51203 0.512359 11.941 6.44
90-LY-212 0.33 0.69 0.290 0.513276 0.51203 0.512362 12.261 6.52
90-LY-219 0.33 0.67 0.299 0.513303 0.51203 0.512364 12.792 6.55
Strupen
Lan-1 0.12 0.21 0.363 0.513336 0.51203 0.512195 13.446 3.24
Lan-23 0.08 0.12 0.386 0.513337 0.51203 0.512125 13.467 1.88
Lan-38 0.16 0.32 0.299 0.513131 0.51203 0.512191 9.446 3.18
Lan-47 0.07 0.13 0.340 0.513323 0.51203 0.512255 13.181 4.42
Lan-58 0.07 0.14 0.326 0.513288 0.51203 0.512264 12.502 4,60
Lan-72 0.05 0.09 0.349 0.513311 0.51203 0.512215 12.946 3.64
Lan-84 0.08 0.16 0.316 0.513147 0.51203 0.512153 9.758 2.42
Lan-97 0.04 0.21 0.110 0.512582 0.51203 0.512237 -1.274 4.08
Lan-100 0.08 0.14 0.345 0.513302 0.51203 0.512216 12.768 3.65
Lan-106 - 0.059 0.113 0.315100  0.513211 0.51203 0.512221 11.007 3.75
Lan-107 0.073 0.141 0.3139 0.513201 0.51203 0.512214 10.806 3.62
Lan-109 0.054 0.336 0.0970 0.512525 0.51203 0.512220 -2.389 3.73
Lan-110 0.195 0.703 0.1680 0.512762 0.51203 0.512234 2.240 4.01
Lan-110 0.20 0.70 0.167 0.512762 0.51203 0.512235 2.241 4.04
Lan-111 0.217 0.394 0.3337 0.513265 0.51203 0.512216 12.063 3.66
Lan-112 0.035 0.085 0.2464 0.512993 0.51203 0.512219 6.758 3.72
Lan-113 0.064 0.129 0.2983 0.513159 0.51203 0.512221 9.987 3.76
Lan-114 0.103 0.197 0.3160 0.513213 0.51203 0.512219 11.032 3.72
Lan-116 0.152 0.284 0.3229 0.513240 0.51203 0.512225 11.570 3.84
Lan-130 0.01 0.03 0.191 0.512788 0.51203 0.512188 2.745 3.11
Isskardet
LY-IS-9 0.11 0.32 0.211 0.513030 0.51203 0.512366 7.478 6.58
LY-1S-16 0.34 0.70 0.292 0.513296 0.51203 0.512379 12.653 6.84
LY-1S-25 0.38 0.78 0.297 0.513295 0.51203 0.512363 12.643 6.53
LY-IS-31 0.46 0.87 0.315 0.513365 0.51203 0.512374 14.007 6.75
Ellendalen
92L.Y119 7.92 78.15 0.2289 0.513068 0.51203 0.512348 8.212 6.24
921.Y93 1.24 8.47 0.3314 0.513411 0.51203 0.512369 14.903 6.65
93LY20 0.95 7.42 0.2882 0.513208 0.51203 0.512302 10.943 5.34
941.Y24 2.18 17.55 0.281 0.513231 0.51203 0.512347 11.392 6.23
941L.Y 39 1.17 10.07 0.2625 0.513173 0.51203 0.512348 10.260 6.23
Goverdalen
95LY2 0.53 4.24 0.2818 0.513187 0.51203 0.512301 10.534 5.32
94L.Y67 1.87 13.79 0.3057 0.513287 0.51203 0.512326 12.484 5.81
95LY38 6.92 60.35 0.2589 0.513190 0.51203 0.512376 10.592 6.79
Veidalen
95LY 127 0.80 5.72 0.3156 0.513298 0.51203 0.512306 12.699 541
95LY106 0.47 2.81 0.3775 0.513373 0.51203 0.512186 14.162 3.08
95L.Y9%4 0.57 3.70 0.3497 0.513394 0.51203 0.512294 14.571 5.19
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Table 2: Continued

13N N Initial **Nd c(asomy)
Sample Sm (ppm) Nd(ppm) 'YSm /“Nd '“Nd/'“Nd CHUR /Nd E CHUR CHUR
95LY75 0.60 6.73 0.2016 0.512914 0.51203 0.512280 5.208 4.91
Iddu 1
Hly 2.8 0.06 0.23 0.154 0.512193 0.51203 0.511709 -8.856 -6.24
Hly 24-93 0.17 0.53 0.194 0.512404 0.51203 0.511794 -4.740 -4.58
Hly 24-94 0.05 0.16 0.199 0.512505 0.51203 0.511879 -2.770 -2.91
Hly 26-94 045 1.53 0.178 0.512604 0.51203 0.512044 -0.839 0.31
Hly 22b-93 0.09 0.2 0.285 0.512759 0.51203 0.511863 2.185 -3.23
Hly 11-94 0.92 2.13 0.262 0.512783 0.51203 0.511959 2.653 ~1.35
Hly 1.8 0.13 0.26 0.301 0.512826 0.51203 0.511880 3.492 -2.91
Hly 25-94 0.14 0.27 0.321 0.512885 0.51203 0.511876 4.643 -2.98
Iddu 2
Hly 5PA 0.84 2.15 0.236 0.512967 0.51203 0.512225 6.242 3.84
Hly 1PA 0.62 1.67 0.223 0.512932 0.51203 0.512231 5.559 3.95
Hly 3PA 1.18 2.65 0.27 0.513108 0.51203 0.512259 8.993 4.50
Hiy 7 PA 0.9 2.27 0.24 0.513005 0.51203 0.512250 6.983 4.33
Dikes, Goverdalen
93LY30 2.976 9.469 0.1900 0.512925 0.51203 0.512328 5.423 5.84
95LY72 1.400 6.006 0.1409 0.512121 0.51203 0511678 -10.254 -6.84
95L.Y72 1.396 5.995 0.1408 0.512125 0.51203 0.511683 -10.176 -6.75
95LY71 0.314 0.566 0.3357 0.513290 0.51203 0.512235 12.544 4.02
95LY71 0.284 0.494 0.3475 0.513336 0.51203 0.512244 13.441 4.20
95L.Y71 0.289 0.522 0.3347 0.513292 0.51203 0.512240 12.581 4.12
Dikes, Iddu
HLY 2993 2.23 8.8 0.153 0.512781 0.51203 0.512300 2.614 5.30
Hly 33-93 3.38 14.73 0.139 0.512749 0.51203 0.512312 1.990 5.54
Hly 28-93 5.54 15.86 0.211 0.513043 0.51203 0.512380 7.725 6.86
Hly 4.6 24 19.49 0.074 0.511753 0.51203 0.511520 -17.439 -9.93
Hly 6.5 2.36 18.28 0.078 0.511789 0.51203 0.511544 -16.737 -9.47
Hly 27-93 1 7.53 0.081 0.511805 0.51203 0.511550 -16.425 -9.34
Hly 5.6 1.84 13.61 0.082 0.511810 0.51203 0.511552 -16.327 -9.30
Hly 36-93 1.29 6.39 0.122 0.511862 0.51203 0.511478 -15.313 -10.74
HLY 222a-93 1.04 3.76 0.168 0.512235 0.51203 0.511707 -8.037 -6.28
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Table 3: Mineral chemistry of the Lyngen Gabbro. All areas are represented, except for Ellendalen. Abbreviations: pl =
plagioclase, ¢ = core, r=rim, cpx = augite, opx= orthopyroxene, Fo=forsterite% of olivine. The minerals are listed so cores
are aligned with cores, rims with rims. There is therefore some repetition in the table so that the representative mineral-
pairings are obvious. Orthopyroxene and olivine show internal variation, and the 1 sigma is therefore equal to the analytical

CIror.

Mg# Mg#
Sample# An% 10 Sample# cpx 10 Sample# opx Sample# Fo
Skaidevarri
90LY 134 plc (5) 93.0 0.71 90LY134 cpxc (5) 84.5 0.20
90LY 134 plrtocpx (5) 93.5 1.03 90LY134 cpxrtopl (5) 847 0.70
90LY 134 plc (5) 93.0 0.71 90LY134 cpx2- (6) 847 0.30
90LY 136-1-pirtocpx (4) 93.2  0.28 90LY136-1 cpxc (3) 854 0.24
90LY 136-1-plrtocpx (4) 93.2 0.28 90LY136-1 cpxrtopl (5) 864 1.11
90LY 136-2-plc (3) 91.3 0.28 90LY136-2 cpxc (4) 85.3 0.68
90LY 136-2-pirtocpx (5) 91.5 1.62 90LY136-2 cpxc (4) 853 0.68
90LY138-1-pl (7) 94.7 0.85 90LY138-1 cpxc (5) 85.1 0.63 90LY138-1-0l (6) 78.7
90LY 138-1-plrtocpx (2) 957 3.82 90LY138-1 cpxr (5) 853 0.74 90LY 138-1-0l (6) 78.7
90LY138-2-plc (5) 94.6 0.67 90LY138-2 cpxc (5) 84.4 0.28 90LY138-2 opx (6) 81.1
90LY 138-2-plr (5) 95.0 1.19 90LY138-2 cpxrtopl (5) 850 0.64 90LY138-2 opx (6) 81.1
90LY141-1-plr (5) 84.1 0.98 90LY141-1 cpxc (5) 790 0.42 90LY141-1 opx (6) 74.2 90LY141-1-0l (6) 69.6
90LY141-1-plrtocpx (5) 85.9 1.97 90LY141-1 cpxr (5) 794 1.23 90LY141-1 opx (6) 74.2 90LY141-1-0l (6) 69.6
90LY141-2-plc (5) 839 0.42 90LY141-2 cpxc (5) 78.8 0.33 90LY141-2 opx (6) 74.5
90LY 141-2-plr (5) 83.8 0.64 S0LY141-2 cpxrtopl (6) 79.2  1.08 90LY141-2 opx (6) 74.5
90LY 142-2 plc (5) 85.0 0.67 90LY142-1cpx (5) 78.0 0.79 90LY142-1 opx (6) 73.0 90LY142-20l (6) 69.2
901.Y 142-2 plrtocpx (5) 86.5 1.10 S0LY142-1cpx (5) 777 0.63 90LY142-1 opx (6) 73.0 90LY142-20l (6) 69.2
90LY142-2 pic (5) 85.0 0.67 90LY142-2cpxc (5) 77.7 0.93
90L.Y 142-2 plrtocpx (5) 86.5 1.10 90LY142-2cpxrtopl (5) 774 0.66
90LY 143-1-plc (5) 87.8 0.81 90LY143-1 cpxc (5) 78.7 0.73 90LY143-1 opx (6) 75.3 90LY143-1-0l (6) 71.3
90LY 143-1-plrtocpx (5) 87.9 0.88 90LY143-1 cpxrtopl (5) 79.5 0.16 90LY143-1 opx (6) 75.3 90LY143-1-0l (6) 71.3
90LY 143-2-plc (3) 88.6 1.38 90LY143-2cpxc (5) 784 1.81 90LY 143-2-0l (6) 70.6
90LY 143-2-plrtocpx (4) 88.9 0.66 90LY143-2 cpxrtopl (5) 80.2 0.49 90LY 143-2-0l (6) 70.6
90LY 144-1-plc (5) 87.0 0.62 90LY144-1 cpxc (5) 79.2 0.63 90LY144-1 opx (5) 73.6
90LY 144-1-pirtocpx (5) 88.3 1.04 90LY144-1 cpxrtocpx (5) 78.6 1.25 90LY144-1 opx (5) 73.6
90LY 144-2-plc (5) 90.6 1.45 90LY144-2 cpxc (5) 78.5 1.19 90Lyl144-2 opx (6) 75.0
90LY 144-2-plrtocpx (5) 929 1.41 90LY144-2 cpxrtopl (5) 79.1 0.92 90Ly144-2 opx (6) 75.0
90L.Y 166 plag (7) 87.6 0.67 90LY166 cpxc (4) 79.1 1.64 90LY166 opx (10) 73.4 90LY166-0l (11) 70.3
90LY166 plag (7) 87.6 0.67 90LY166 cpxrtopl (4) 78.0 0.68 S0LY166 opx (10) 73.4 90LY166-ol (11) 70.3
90LY 168-2 plc (5) 85.0 0.28 90LY168-1 cpxc (4) 78.1 0.52 90LY168-10l (6) 69.2
90LY 168-2 plrtocpx (5) 87.0 0.89 90LY168-1 cpxrtopl (5) 77.9 0.76 90LY168-10l (6) 69.2
90LY168-2 plc (5) 850 0.28 90LY168-2 cpxc (4) 78.0 0.84 90LY168-2 opx (4) 73.3
90LY 168-2 plrtocpx (5) 87.0 0.89 90LY168-2 cpxrtopl (4) 77.6 0.39 90LY168-2 opx (4) 73.3
90LY169-1 plc (5) 84.6 0.46 90LY169-1 cpxc (5) 78.9 0.67 90LY169-1 opx (6) 72.5
90LY169-1 plrtocpx (5) 86.2 0.68 90LY169-1 cpxrtopl (5) 78.7 0.89 90LY169-1 opx (6) 72.5
90LY169-2 pl (6) 849 049 90LY 169-20l (6) 68.1
90ly 192 pl (6) 85.1  1.00 90ly 192 cpx rage(6) 76.1 1.93 90ly192 opx (6) 70.5
90ly-216 plag (6) 84.3  0.95 90ly-216 cpx (6) 77.1  1.20 90ly-216 opx (6) 71.6
90ly221 plag (5) 85.3  0.55 901y22] cpx (5) 75.3 1.26 901y221 opx (5) 71.8 90ly221-ol (6) 66.9
1ddu
Ipa-plag 526 203 1pa-opx 60.7
2pa-plag 59.8 2.57 2pa-cpx 73.5 0.89 2pa-opx 64.3
3pa-plag 60.2 1.70 3pa-cpx 74.5 0.84 3pa-opx 64.0
4pa-plag 58.4 1.90 4pa-cpx 76.1 1.06 4pa-opx 66.1
Spa-plag 58.9 0.59 Spa-cpx 74.2 1.09 Spa-opx 64.1
6pa-plag 58.6 1.19 6pa-cpx 73.3 1.26 6pa-opx 63.0
Tpa-plag 744 2.28 Tpa-cpx 712 1.89 7pa-opx 62.4
11pb 11pb-cpx 726 1.69
pb16-plag 75.0 1.16 16pb-cpx 72.8 1.26 16pb-opx 64.8
pb18-plag 67.4 1.24 18pb-cpx 739 1.26 18pb-opx 64.6
pb19-plag 57.6 1.19 19pb-cpx 76.0 1.15 19pb-opx 66.1
pb21-plag 63.4 2.20 Pb2l-cpx 76.7 _0.89 Pb2l-opx 65.4
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Mg# Mg#
Sample# An% 10 Sample# cpx 10 Sample# opx__Sample# Fo
Strupen
Lan-1 Lan-1 76.9 Lan-1 67.8
Lan-2 97.1 Lan-2 76.1 Lan-2 68.6
Lan-3 94.6 Lan-3 75.6 Lan-3 66.4
Lan-4 Lan-4 73.1 Lan-4 59.3
Lan-5 96.9 Lan-5 73.4 Lan-5 63.6
Lan-7 93.1 Lan-7 729 Lan-7 64.1
Lan-8 93.7 Lan-8 752 Lan-8 64.9
Lan-9 94.1 Lan-9 75.3 Lan-9 66.5
Lan-10 94.6 Lan-10 75.7 Lan-10 67.1
Lan-11 934 Lan-11 75.5 Lan-11 66.6
Lan-12 93.0 Lan-12 75.5 Lan-12 65.0
Lan-13 93.7 Lan-13 73.9 Lan-13 65.6
Lan-14 93.7 Lan-14 74.7 Lan-14 65.2
Lan-15 93.9 Lan-15 733 Lan-15 64.2
Lan-16 94.0 Lan-16 74.3 Lan-16 64.8
Lan-17 Lan-17 Lan-17 63.2
Lan-18 95.5 Lan-18 74.1 Lan-18
Lan-19 922 Lan-19 73.0 Lan-19 63.9
Lan-20 92.6 Lan-20 72.6 Lan-20 63.7
Lan-21 93.2 Lan-21 75.5 Lan-21 64.6
Lan-22 92.6 Lan-22 74.0 Lan-22 65.7
Lan-23 93.9 Lan-23 73.3 Lan-23 63.3
Lan-24 93.5 Lan-24 73.3 Lan-24 64.6
Lan-25 91.9 Lan-25 74.8 Lan-25 65.9
Lan-26 93.5 Lan-26 75.3 Lan-26 67.0
Lan-27 94.8 Lan-27 76.5 Lan-27 66.0
Lan-28 94.7 Lan-28 77.8 Lan-28 68.4
Lan-29 93.9 Lan-29 75.7 Lan-29 68.1
Lan-30 94.6 Lan-30 710 Lan-30 68.6
Lan-31 98.2 Lan-31 76.3 Lan-31 68.3
Lan-32 94.7 Lan-32 77.0 Lan-32 68.7
Lan-33 Lan-33 74.6 Lan-33 66.5
Lan-38 96.3 Lan-38 82.0 Lan-38 74.5
Lan-44 94.1 Lan-44 74.8 Lan-44 64.6
Lan-45 94.2 Lan-45 739 Lan-45 65.5
Lan-47 94.9 Lan-47 74.6 Lan-47 64.1
Lan-48 939 Lan-48 74.5 Lan-48 63.4
Lan-49 95.1 Lan-49 Lan-49
Lan-50 94.3 Lan-50 74.3 Lan-50 62.8
Lan-51 95.0 Lan-51 Lan-51
Lan-52 94.5 Lan-52 73.1 Lan-52 61.7
Lan-54 95.6 Lan-54 Lan-54
Lan-56 95.6 Lan-56 Lan-56
Lan-58 94.4 Lan-58 713 Lan-58 59.6
Lan-60 95.6 Lan-60 Lan-60
Lan-61 94.2 Lan-61 71.8 Lan-61 594
Lan-62 Lan-62 Lan-62 65.9
Lan-64 96.9 Lan-64 754 Lan-64 66.7
Lan-65 Lan-65 75.0 Lan-65 67.4
Lan-66 Lan-66 76.4 Lan-66 66.4
Lan-67 96.0 Lan-67 75.9 Lan-67 63.2
Lan-68 96.1 Lan-68 75.6 Lan-68 64.8
Lan-69 95.7 Lan-69 75.6 Lan-69 64.9
Lan-70 95.5 Lan-70 73.9 Lan-70 63.0
Lan-71 94.2 Lan-71 69.6 Lan-71 59.1
Lan-72 93.9 Lan-72 70.4 Lan-72 57.0
Lan-73 90.5 Lan-73 69.9 Lan-73 57.5
Lan-74 93.7 Lan-74 70.6 Lan-74 58.0
Lan-76 95.0 Lan-76 75.3 Lan-76
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Table 3: Continued

Mg# Mg#
Sample# An% 10 Sample# cpx 10 Sample# opx Sample# Fo
Goverdalen
95ly34 77.2 95LY34 72.5 95LY34 64.9
95ly35 79.0 951y35 73.8 951ly35 67.0
951y38 48.6 951y38 66.9 951y38 56.8
951y39 87.2 951y39 79.4 95ly39 75.2 951y39 72.3
951y40 87.6 951y40 83.6
Veidalen
95ly127 86.6 951y127 72.1 951y127 64.4 95LY126 68.1
95LY126 89.9 95LY126 77.0 95LY 126 72.3
951y107 942 951y 107 83.4 951y107 75.5
951y106 95.7 951y106 83.2 951y106 78.4 95ly106 75.9
95LY105 94.7 95LY105 80.3
95LY90 91.2 951.Y90 79.2 95LY90 75.2
95L.Y93 93.8 95LY93 80.7
95LY94 95.3 95LY%4 79.9 95LY9%4 74.3
95LY95 93.8 95LY95 79.9 95LY95 74.0 95LY95 71.1
95LY96 95.4 95LY96 80.2 95LY96 74.8 95LY96 722
95L.Y87 917 95LY87 88.0 95LY87 83.8 95LY87 83.5
Isskardet
1S-2 plagc (5) 83.8 0.69 IS-2cpxc(5) 75.9 0.61 1S-201 (6) 64.2
IS-2 plagr (5) 84.5 1.94 IS-2 cpxr(5) 75.8 0.70 IS-20l (6) 64.2
IS-6 plage (5) 75.7 7.29 IS-6 cpxc (5) 75.7 0.18 1S-601 (6) 66.5
IS-6 plagr (5) 834 1.25 IS-6 cpxr (5) 764 0.25 1S-601 (6) 66.5
1S-9 plage (5) 83.0 0.92 IS-90l (6) 67.6
IS-9 plagr (5) 83.6 0.63 1S-90l (6) 67.6
IS-16 plage (5) 84.2 0.96 IS-16 cpxc (5) 76.3 1.02 IS-16 opx (6) 72.7 1S-160l (6) 67.8
IS-16 plagr (5) 83.5 1.45 IS-16 cpxr (5) 76.3 0.42 IS-16 opx (6) 72.7 1S-1601 (6) 67.8
IS-20 plagi-c (5) 82.2 0.59 IS-20 cpxc (5) 75.5 0.71 IS-20 opx (6) 71.2  IS-200l (6) 66.6
IS-20 plagl-r (5) 84.5 1.12 IS-20 cpxr (5) 75.8 0.46 1S-20 opx (6) 71.2 IS-200l (6) 66.6
1S-20 plag2- (4) 844 0.92 IS-20 cpxr (5) 75.8 0.46 1S-20 opx (6) 71.2 1S-200l (6) 66.6
IS-26 plagc (5) 80.8 1.65 IS-26 cpxc (5) 752 0.43 1S-260l (6) 67.1
1S-26 plagr (5) 82.2 2.55 IS-26 cpxr (5) 75.3 0.20 IS-260l (6) 67.1
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Chapter 3

Accretion of the lower crust at Atlantis Bank: The results of
geochemical modeling

Abstract

We have developed a quantitative and qualitative model for the accretion of the
lower crustal rocks at Atlantis Bank, Southwest Indian Ridge. We use the Melts-program
to establish the mode of accretion and extent of reaction for gabbros sampled in Hole
735B, and find that fractional crystallization of a near dry melt with Na; ~ 3 and Fe; ~ 9
at crustal pressure on the quartz-fayalite-magnetite oxygen fugacity buffer fits the general
evolution of the solid- and liquid-line of descent at Atlantis Bank. Our model predicts
that approximately 770 vertical meters of the lower crustal section has not been sampled
and that the total crustal thickness at Atlantis Bank was more than 4.4-km. Thus, the
observed seismic Moho may indeed be the crust-mantle boundary, and not an alteration
front as previously suggested.

Slow-spreading ocean ridges typically have gabbros with unusually high Mg-
augites. We use our models and the degree of disequilibrium between the minerals to
establish how far off the fractionation-trend the rocks plot. The majority of the gabbros
in the lower 1000 meters of the hole have augite with elevated Mg#’s, up to 10 mol%
higher than what is required by fractional crystallization. Thus, we propose that
interstitial melts in a mush-zone have dissolved pre-existing minerals, causing the melt to
become more Mg and Ca rich. Plagioclase and augite do not re-equilibrate with the melt,
as solid-state diffusion is very slow. Thus, when the hybrid melt crystallizes, this will

result in higher Mg# augites and higher anorthite plagioclase.

1 Introduction

Coexisting phases in Atlantis Bank gabbros, and in other gabbros produced from
elevated Na; basalts, are often out of equilibrium with each other, i.e. they could not have

been crystallized directly from mid-ocean ridge basalts at crustal pressures (Bloomer et
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al., 1989, 1991; Meyer et al., 1989; Elthon et al., 1987, 1992, Michael and Cornell, 1998,
Dick et al., 2002). High Mg# augite is easily identifiable in the lower crust at these slow-
spreading. Bloomer et al. (1989) showed that most gabbros from Indian Ocean fracture
zones crystallized from more fractionated liquids than spatially associated erupted pillow
basalts. It has been suggested that the primitive magmas are emplaced towards the center
of each ridge-segment, which is why we do not see primitive gabbros in the fracture
zones (Whitehead et al., 1984; Dick 1989; Magde, et al., 1997). Bloomer et al. (1989)
also found that augite coexisting with plagioclase was more magnesian than expected for
plagioclase anorthite content, and that augite starts crystallizing earlier relative to
plagioclase than in 1-atm experiments. Bloomer et al. (op. cit.) suggested that they
formed by in-situ crystallization (as parameterized by Langmuir, 1989) along the edges
of small magma-bodies while higher-T magmas were repeatedly injected along them.
These observations effectively require that there must be olivine-rich cumulates
representing higher-T melts somewhere in the crust or shallow mantle. Elthon et al.
(1987, 1992) observed the same early-onset crystallization of primitive-looking
clinopyroxene along the Mid-Cayman rise, and suggested that they formed by high-
pressure (3-10 kbar) crystallization, whereas Meyer et al. (1989) also found early onset of
high-Mg pyroxene in dredged gabbros between the Shaka- and Islas Orcadas Fracture
Zones, Southwest Indian Ridge. They argued that the high-Mg augites in the gabbros are
due to small amounts of trapped liquid. Solid-state Fe/Mg diffusion is fast in olivine,
therefore the interstitial melt gains Mg and looses Fe to the olivine as the melt evolves.
As a result, the Mg# of the augite subsequently precipitated from this melt has constant
Mg#’s, but very varied incompatible element levels. Bédard et al., (2000 and references
therein) concurred, but argued that syntexis (the processes, mechanical and chemical, by
which magmas react with and assimilate their host rocks) causes the shift to high Mg
augite relative to the anorthite content of the coexisting plagioclase. In this view, the
chemical evolution of primary MORB are as dependent on assimilation and reaction with
older cumulates as on fractional crystallization, as the crust acts as a reactive filter during

melt transport.
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ODP Hole 735B was drilled at the center of a ridge-segment immediately to the
east of Atlantis II Fracture Zone at 700-m water depth on top of Atlantis Bank, Southwest
Indian Ridge (Shipboard Scientific Party, 1989; Dick et al., 1991a). The relatively
shallow drill site is an uplifted oceanic core complex, and flexural uplift from the
detachment and transform-parallel faults partly explains the shallow bathymetry (Baines
et al., 2003). The seismic crustal thickness at the bank is 5 + 1km thick (Muller et al,
1997). Two ODP Legs, 118 and 176, drilled a total of ~1500-m mostly gabbroic rocks
with unusually high recovery (87%). In addition, another site, 158-m deep Hole 1105A
was drilled 1-km to the north of Hole 735B (Shipboard Scientific Party, 1999) in very
similar rocks.

There is a very large major-element mineral-, and major-element-, trace-element-,
and isotope- whole-rock database for the entire core, as compiled by Dick et al. (2002)
and Natland and Dick (2002). An extensive, quantitative and qualitative fractionation-
model has not been demonstrated for the entire crustal section, although attempts have
been made for Hole 1105A (Thy, 2003). In this chapter, we use a special version of the
Melts program (Melts5) (Ghiorso and Sack, 1995) to evaluate the solid-lines of descent
for the lower crustal rocks at Atlantis Bank to quantify the extent of disequilibrium. The
effect of melt-composition, oxygen fugacity, water, pressure, and crystallization
processes are evaluated. In addition, BASALT (latm) (Weaver and Langmuir, 1990) and

Yang et al. (1996) was used to assess the accuracy of the Melts algorithm in this system.

2 Methods
Melts5 (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998; Asimow pers

comm. 2002) provides oxide-compositions, components, and thermodynamic properties
of the silicate-, spinel (including ulvdspinel) and some accessory minerals, together with
the properties of the evolving melt. This offers an opportunity to directly compare
electron-microprobe mineral-analyses of the Atlantis Bank gabbros to model-minerals
produced from several starting-compositions (Table 3-1) under different starting
conditions. We varied the water-content from dry to 0.5 wt%, the oxygen fugacity from

QFM+1 to QFM-1 and the pressure from lkbar (0.1GPa) to 3kbar (0.3GPa). The original
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Table 1: The starting compositions of the melts used for our models
Cp10 had 6% olivine removed and 10% gabbro added (See chapter 3).
SWIR  Site352 Ridge glass S:;ilrg’ﬂate a ;1;1137-1) 20
PMORB SWIR RC27-9-44-14 10% gabbro PMORB
Sio, 50.3 50.3 49.9 51.1 49.6
TiO, 0.91 1.94 1.67 0.96 0.63
Al O, 16.4 15.3 15.9 17.6 17.5
Fe,0; 1.2 1.6 1.1 1.3
FeO 9.0 8.4 53 6.3
FeO* 7.45 10.0 9.9 6.3 7.5
MnO N.d 0.2 0.2 0.01 N.d.
MgO 109 - 7.6 8.2 8.7 9.9
Ca0 11.4 10.6 10.9 12,6 13.0
Na,O 2.52 3.35 2.92 2.62 1.65
K,O 0.07 0.2 0.11 0.01 0.02
P,0; 0.12 0.2 0.19 0.2 0.12
H,0 Variable 0.3 0.05 0.0 0.0
Mg# 72.3 57.4 59.8 71.2 70.4
Ca# 71.4 63.5 67.3 72.7 81.3
etal  Robi A ,  Modied from focation & near
Reference. Dot feben,  dmsenng Kol iy
6 (1992) Cunh;gr::cture
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compositions were evolved by fractionation of solids in 1°C intervals. Thus, the models
represent an approximation to fractional crystallization, with large jumps produced where
the model meets phase-boundary reaction-points. We performed batch equilibrium
crystallization in only one model-run. We tested our results by using BASALT (Weaver
and Langmuir, 1990, “W&L”) and the algorithms from Yang et al., (1996), and compared
the modeled mineral-compositions to the available data from Hole 735B. Each model
run is evaluated using coexisting mafic minerals with plagioclase, together with the

composition of the evolving melt.

3 Results

Dick et al. (2000) selected a primary melt composition (“SWIR PMORB", Table
3-1) from Kinzler and Grove (1992) as best fitting the bulk composition of Hole 735B.
SWIR PMORB has Na; = 2.95 and a Fe, = 9.2 (using the algorithms from Klein and
Langnﬁuir, 1987), similar to published glass compositions from the Atlantis II Fracture
Zone (Johnson and Dick, 1992). We test whether this is a valid starting composition by
theoretically fractionating it at l1kbar, which represent mid- to lower crustal levels at
Atlantis Bank. The liquid-line of descent and solid-lines of descent are shown in Figure
3-1. Our starting-composition has no Cr,0s;, so chrome-spinel is not produced. The
primary melt has olivine on its liquidus at 1253°C (1259°C, W&L) and starts
precipitating plagioclase after only 6% fractionation at 1220°C (1224°C, 4% W&L). This
troctolitic assemblage is precipitated until 26% crystallization (1207°C) (1186°C, 32%
W&L), where augite falls on the liquidus. The olivine-plagioclase-augite assemblage is
crystallized together to ~1183°C (49% fractionated) (1000°C, 90% W&L), where olivine
is replaced by low-Ca pyroxene. BASALT was run at latm, and does not crystallize a
spinel-phase (“spinel” is ulvospinel), accounting for this calculated discrepancy at low
temperatures. The magnetite/ilmenite boundary is found at 1108°C (78% crystallized),
late-stage olivine appears at 1034°C (90% crystallized), and apatite starts precipitating
late, at 950°C (97.5% crystallized). The algorithm developed by Yang et al. (1996),

indicates temperatures ~50°C lower than Melts5 (Fig. 3-11B), and we will include this
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Figure 3-1: The complete model run for SWIR PMORB with 0.05wt% H,O at lkbar and QFM. The
symbols represent the An% (=100*Ca/(Ca+Na), K is near absent from the system) of plagioclase co-
precipitated with augite (squares), olivine (circles) and pigeonite (diamonds) as represented by their Mg#’s
(100*Mg/(Mg+Fe)). The black line represents the Mg# and Ca# of the evolving melt, and the gray lines
connect the melt and mineral-pairs at 10% crystallization intervals relative to the original melt.
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discrepancy in the later evaluation, but will continue to use the lkbar-model as a
baseline-model.

Crystallization of the SWIR PMORB (damp and dry) at 3kbar and QFM (Fig. 3-
2) has subtle differences between them. Three kbar at Atlantis Bank represents depths
equal to crystallization within the mantle (e.g. 9-km). In the dry model (Fig. 3-2A),
olivine is on the liquidus early (1270°C), but ceases to crystallize (1241°C) before
plagioclase starts and is replaced by high and low-Ca pyroxene. Thus, the primitive,
plagioclase-bearing cumulates are gabbronoritic in composition and olivine does not
show in the plot. Olivine comes back on the solidus early (1176°C, after ~70%
crystallization) and the ulvdspinel-phase starts crystallizing at 1119°C (85%). The damp
melt (Fig. 3-2B) has two main differences from the dry melt: 1) Late-stage olivine comes
back on the liquidus at 40°C below that of the dry melt. 2) The plagioclase has higher
An% at any given mafic mineral Mg# and melt Ca#, as is clear from the right-slanted tilt
in the gray lines that joins the crystallization steps of melt and the cumulates.

The basaltic carapace that once overlay Atlantis Bank is exposed on a lithospheric
flow-line in the rift mountains ~55-km north of the ridge. Robinson et al. (2001)
analyzed pillow-basalt glasses from this reciprocal basaltic carapace, and we have used
one of these samples for a test of the models of the sensitivity to the oxygen fugacity
(Table 3-1). It should be noted that since there are no Cr in these analyses, crome-spinel
is not a part of these calculations. The glasses contained some water (0.27 wt%), which
we use in the model shown in Figure 3-3. At QFM+1 (more oxidized) the model gives
very high forsterite-contents for olivine relative to augite, and augite crystallizes early
(Fig. 3-3A). This occurs as the olivine only takes up Fe** ions, making the effective Mg#
higher than at lower oxygen fugacities. The high oxygen-fugacity model fails to lower
the Mg# of the solids and liquids as the melt evolves, as a large fraction of the ulvospinel-
phase crystallizes (it uses 5 wt% of the original liquid to crystallize), keeping the Fe low
in the melt. Thus, there is no late-stage olivine. The reduced case (QFM-1) sees the
opposite effect (Fig. 3-3B). The spinel-phase is nearly suppressed, with lower melt and

solid Mg#’s. relative to plagioclase. Augite crystallizes after 30% fractionation.
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Figure 3-2: Higher pressure crystallization. The symbols are the same as in Figure 1. A: The
crystallization sequence of SWIR PMORB at dry conditions and 3kbar pressure. B: The same melt
crystallized with 0.05wt% H,O in the starting composition.
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Figure 3-3: Crystallization of a glass from north of the ridge segment, at the upper crust produced
reciprocally to Atlantis Bank, Sample Site3-5-2 (Robinson et al., 2001, Table 3-1). A: lkbar, at QFM+1
log-unit. Only the tie-line at 10% crystallized and 80% crystallized are shown. At QFM+1 the melt is near
saturated in plagioclase-augite-olivine. B: The same melt crystallized at QFM-1. Augite is suppressed
until 34% crystallized.
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Figure 3-4: A: Crystallization of RC27-9-44-14 with 0.5 wt% H,O at lkbar and QFM. B: Bulk
crystallization of the same melt, where the solid is not separated from the liquid. Note how the melt
compositions turns around and becomes higher in Ca# with crystallization.
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Figure 3-5: Note that the axes are slightly different from Figure 1-4. A: Crystallization of AII107-D20 at
QFM and lkbar. Tie-lines for 10 and 90% crystallized are shown, together with augite-in (23%
crystallized). B: Crystallization of dry RC27-9-44-14 at 1kbar. Tie-lines for 20 and 80% crystallized (with
respect to the starting-composition) are shown.
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Water has a strong effect on the solid-line of descent. Figure 3-4A shows the
fractionation of glass RC27-9-44-14 collected from Atlantis II Fracture Zone at 1kbar and
QFM with 0.5% of water added (Table 3-1). Compared to the previous models, it has
elevated plagioclase anorthite and no late-stage olivine as Ca partitions more strongly
into the plagioclase than the melt at such hydrous conditions (Housh and Luhr, 1991).
Nonetheless, the Mg# of the augite is still high, while the Fo-content of olivine is low
relative to drier model runs.

Batch equilibrium crystallization, where the solid and the liquid stay in
equilibrium throughout solidification, is very different from the previous models (Fig. 3-
4B). The model terminates for plagioclase around Ans, and no mafic mineral has Mg#’s
below 65.

The composition of the original melt strongly influénces how the composition of
the solid will evolve. Figure 3-5A shows a dry fractionation of a southern Mid-Atlantic
ridge basalt glass from near Tristan De Cunha (PetDB) compared to that for the Atlantis
II Fracture Zone glass above (Fig. 3-5B). Note that the abscissa is wider in this figure
than in the others. The Atlantic basalt is more depleted than the Southwest Indian Ridge
basalt, with much lower Na; and higher Fe;. This produces a model result with
composition of the solid having higher plagioclase anorthite contents at the same Mg# of
the solids, and little plagioclase forming below Any,. In the Southwest Indian Ridge-
sample, however, the plagioclase has much lower An-contents, and 1/3 of the plagioclase

© crystallizes below Ans,.
4  Discussion

4.1 Mode of accretion of the gabbros in Hole 735B

We now compare our models to the existing data from Hole 735B (Dick et al.,
2002) (Fig. 3-6) using co-existing minerals in the gabbros. Many authors have described
the compositional variations in the minerals in Hole 735B (Bloomer et al., 1991; Dick et
al., 1991a; Natland et al., 1991; Ozawa et al., 1991; Hébert et al., 1991; Dick et al., 1992;
Dick et al., 2000; Natland and Dick, 2001; Thy and Dilek, 2000). Hole 735B has 953
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discrete described igneous intervals, with additional subdivision possible on centimeter
scales (Dick et al., 2000). Plagioclase and clinopyroxene are ubiquitous, and the gabbro-
types are distinguished largely by variations in grain size and amount of olivine, oxides
(magmatic ilmenite and titanomagnetite) and orthopyroxene. The average grain-size
varies from 5-15 mm to 15-30 mm (the definition of very coarse grain-size is >30 mm)
and crystals in excess of 10-cm have been found. Only a small fraction of the lithologic
contacts are simple faults rather than involving a magmatic origin. The igneous
stratigraphy is divided into 12 polygenetic units, but are separated into three major
associations: 1) the dominant, oxide poor, olivine-bearing gabbros (and coarse-grained
troctolites), 2) cross-cutting microgabbros and fine- to medium-grained troctolite, and 3)
ferrogabbros often highly deformed relative to the olivine gabbro that encompass oxide-
bearing gabbros and gabbronorites. The nature, origin and number of geochemical units
are much debated. Of the studies that involve the entire core, Dick et al (2000)
demonstrate five major olivine-gabbro units from 200 to 600m thick, crosscut by many
ferrogabbro units that diminish in size and number down-hole. The ferrogabbros were
interpreted to represent the intrusion of late interstitial melts that migrated from the
cumulate into shear-zones during the detachment faulting that exposed the core-complex.
The fraction of oxides down-hole is shown in Figure 3-7. Natland and Dick (2001)
identified 97 separate olivine gabbro sequences, arguing that each represent an individual
injection of magma forming two principal bodies of olivine gabbro. Thy and Dilek (2000)
suggested the core represents four individual blocks of gabbro.

For the purpose of this study, the mineral-data is separated into the upper 550-m,
the middle 450-m and the bottom 500-m, and is compared to the 1-kbar SWIR-PMORB
model (Fig. 3-6). The upper 1000 meters of Hole 735B have a range of compositions
best described by fractional crystallization, whereas the lower 500 meters terminate at the
plagioclase anorthite contents similar to the batch-equilibrium crystallization-model (Fig.
3-4B) making it difficult to distinguish these processes there based on major elements
alone. The more than 1500 plagioclase and clinopyroxene-averages have been

meticulously sorted, so that cores are plotted with cores and rims with rims. This, and as

114




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

volume % oxides, observed

0 5 10 15 20 25
T T T 17 v T T 7 r 5T
200 ' ‘ y
———
400
600
800
Y
3
1000
> L
=~ RUnning average(11)
= Running average(25)
1200
1400
1600 1 1 [l 1 | ] 1 1 [l | 1 1 ] 1 l L 1 1 1 | 1 1 1 1

0 5 10 15 20 25

Figure 3-7: Observed volume% of oxides in Hole 735B. The lower 1000 meters are from Dick et al.
(2000), whereas the upper 500 meters were logged by inspection with a hand-lens at TAMU. Variations in
the volume of oxides were logged so that a total of ~1500 observations were made. The gray lines
represent running averages of 11 observations, the black lines represent running averages of 25. As much
as 50% oxides were observed in the core.
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errors in the analyses are small (0.5 mol % An, Fo or Mg#), the scatter seen in the plot
is not due to errors in the large data-set. A bimodal mineral-composition distribution is
obvious in the upper third of the hole, as described by Bloomer et al (1991) and the many
others mentioned above. The lower ~1000 meters do not have this bimodality, with
plagioclase < An,s rare, and the sections become progressively more homogeneous
downwards. In the upper 550-m, the cross-cutting fine to medium-grained troctolites
represent 25-45% crystallization, the olivine gabbros 45-70% crystallization, and the
ferrogabbros represent 80-90% crystallization (by volume or weight) relative to the
modeled primary melt composition (SWIR PMORB). The cross-cutting troctolites are
the most primitive rocks in Hole 735B and differ significantly from the coarser,
conformable troctolites deeper in the Hole. The olivine gabbros from the lower 1000-m
were produced from melts fractionated > 60% elsewhere, and crystallized more than
80%. Thus, if mantle-derived melts do form these gabbros, and crystallization shielded
from mantle olivine has not occurred in the mantle, there are at least 700 vertical meters
of primitive crust somewhere else in the section not yet drilled (Table 3-2).
Crystallization of melts in the presence of mantle olivine would, like Meyer et al. (1989)
suggested, keep a constant Mg# of the magma while the Ca# of the melt evolves. The 3
% troctolites in the upper 550-m make up far less volume than the 20% expected from the
model, suggesting ~70 meters of missing troctolites, making the total missing cumulates
770 vertical meters. If the gabbro complex becomes more differentiated towards the ends
of the paleo-ridge segment, which is likely, then the undrilled cumulate-section would
become even longer. In addition, escape of differentiated melts from the cumulate-pile,
similar to erupted MORB’s in the region would also increase the estimated thickness of

the undrilled —section proportionally.
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Table 3-2: Amount crystallized relative to a mantle derived melt for Hole 735B and the calculated

undrilled section on the basis of the fractional crystallization model.
Unit: Troctolite Olivine Ferro gabbro Undrilled section
gabbro
Upper 550m 25-40% 40-80% 80-90% (+) 137m + 12% (troct) (=66m) ~200m
Lower 950m : 60-80% (+) 570m
Total undrilled 770m
section

As is described in Chapter 4, augite is texturally younger than the coexisting
plagioclase in the rocks. Mineral-pairs that plot below the solid line of descent, towards
more refractory plagioclase or less refractory augite, are consistent with this textural
observation and the simple progressive crystallization model. Major parts of Hole 735B
plot above the model solid-line of descent, however, and thus late crystallization of more
evolved interstitial melts cannot explain them. The model also predicts a pause in olivine
crystallization, but olivine is close to ubiquitous in the core, and there is no compositional
discontinuity in forsterite content. It is important to note that the olivine — plagioclase
pairs in the evolved oxide-gabbros generally do follow the same path as the model,
indicating that the ferrogabbros have internal equilibrium (Fig. 3-6b). Low-Ca interstitial
pyroxene (orthopyroxene) is also common throughout the core, at both the evolved and
primitive end of the spectrum with a much wider range than the model predicts. It is
therefore possible that there are reactions between pyroxene, olivine and silica over- and
undersaturated interstitial melt, due to the peritectic reaction between olivine and melt
that produce pyroxene and vice versa.

The primitive end of the model indicates that olivine is fairly close to equilibrium
with plagioclase. However, if the system is in equilibrium, the coexisting mafic minerals
also should be in equilibrium. Figure 3-8 compares Hole 735B data to the solid line of
descent for SWIR PMORB. Again, if the system is well described by a fractional
crystallization model, there should be no points plotting significantly above these lines
whereas most of the refractory gabbros do. The extremely evolved oxide-olivine
gabbros, however, follow the trend beautifully, and the iron-rich late-stage olivine defines
the QFM-buffer with coprecipitating fayalite and magnetite. According to our model

calculations, these late-stage rocks must be crystallized from melts that have fractionated
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Figure 3-8: The augite coexisting with olivine of Hole 735B, as represented by their respective Mg#’s and
Fo%. The augite-analyses represent all the analyses for each crystal, the olivines are averages. The thin
black line represent a hypothetical olivine-augite pair in equilibrium with a melt as calculated by often-used
partition-coefficients (as indicated). The thick gray line to the upper right represent the 1kbar model, the
two to the left represent the 3kbar dry model, whereas the thick black curve represents the damp 3kbar
model. Also included are data from the layered intrusion in Kiglapait (Morse, 2001), demonstrating how
the ferrogabbros from Hole 735B are similar to the sandwich-horizons in layered intrusions.
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Figure 3-9: This figure demonstrates how the partition-coefficients for iron and magnesium between the
crystals and melt control the variation of the Mg#’s of the crystals. Higher magma-temperatures makes the
Mg#’s more similar (thick lines), whereas lower temperatures make them diverge (thin lines).
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more than 90% relative to SWIR PMORB. Thus the liquid-line of descent must have

been controlled by near fractional crystallization at crustal pressures on the QFM-buffer.

4.2 The extent of disequilibrium in the refractory gabbros

The partition-coefficient dependency between the minerals and melts can be
described by:
tl liq
xumen = XEeo % Xmgo
KdFe/Mg Xliq th]
FeO MgO

*
Mg#mell "M% melt XMg

; (1) so:

Kd?tel//ﬂzh = s (2a), therefore

XMg - XMg * Mg# melt

#,
XMg = xtl/melt Mg *mehxtl/melt ? (2b)
KdFe/Mg - Mg# melt Kch/Mg +Mg# melt
X * xtellrnclt ’
Mg#melt = e KdF*/Mg <tUmelt ’ (20)7 and
1-X,, + Xy, *Kdiome
xtll 1 12
xul/xtl2_ XMtg _Xxf:[g *X;;g (2d)

Kdremg — Xﬁ? -X;Itlg] *X;;f ’
(Roeder and Emslie, 1970; Wood and Blundy, 1997) where Xf;*‘is the Mg# (molar
Mg/(Mg+Fe) for these formulas only, 100* Mg/(Mg+Fe) for the rest of this chapter) of a

phase (usually the solid unless mentioned), and Kd; are the partition coefficients
between a solid and a liquid. Equation 2d describes the partitioning of Fe/Mg between

two minerals. It is known that Kd. s, evolves with fractionation from 0.23 towards

0.17 (all Fe as FeO) (Grove and Bence, 1977). Kd5/* is generally 0.3x.03 for melts
that have Mg# > 45 (Roeder and Emslie, 1970). The primitive end of the fractionation-
trend is not very sensitive to the partition-coefficients (Figure 3-9), in fact the entire
spectrum of de,?;,-ﬁ%,,d, , 0.23-0.17 (Grove and Bence, 1977), only increases the Mg# by
~2.5 mol%. Toplis and Carrol (1995) described Kd.7,M as high as 0.5 in ferro-basalts.

Therefore, the evolved melts are far more sensitive to partition-changes, as Kdj i 1S

much lower and Kd/¢¢ ., much higher.
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Both KdigMe ... and Kdiive, . vary inversely with temperature (Loucks, 1996;

olivinel augite
Braun, pers. comm. 2004) and is used to subtract the effect of temperature of
crystallization from the actual geochemical offset provided by the post-cumulus
processes and quantify the disequilibrium with depth in Hole 735B relative to the Melts-
model. Figure 3-10 shows the partitioning between coexisting olivine-augite and olivine-
orthopyroxene, so they can be compared to the equilibrium-lines for the primitive and

evolved gabbros. For Kdjim.e. (Fig. 3-10A) the gray line to the left indicates a

Kdte e . of ~1.4 produced by KdioMe ., =0.23 and Kdi.¢ =0.33, the right line

olivinel augite

represents a Kdioms,... of ~2.8 calculated from Kdims, = 0.18 and Kdfu¢ = 0.5,

respectively (op. cit.). The geothermometer of Loucks (1996) provide Kdyfms,...’s that

plot non-linearly with temperature.
The expected decrease in crystallization temperature for Mg# 89-84 augite

increases in KdhiMe .. by 0.15. We used the baseline-model of PMORB SWIR as a

livinel augite
reference for augite Mg#’s (Fig. 3-11) and recalculated the crystallization-temperatures
of the melts using the algorithm from Yang et al. (1996) as Melts appears to give
crystallization-temperatures ~50°C too high.

Similarly, over the compositional range of the intermediate gabbros (white

squares in Fig. 3-10) (Mg#84-76) the KdJms ..z Can increase by 0.51. Examination of

Figure 3-10 shows that many olivine-gabbros with augite > Mg# 84 plot far to the right
of the 0.15 shift permitted by equilibrium, and many of the intermediate gabbros plot to
the right of the maximum 0.51 shift. The oxide-gabbros (black squares in Fig. 3-10),
however, should and do extend to the far right side of the diagram, representing
crystallization of extremely evolved ferro-basalts. If we assume that the lowest value for

Kde M . = 1.35 is correct for the most primitive gabbros and troctolites the

livinel augite
temperature-dependence will only increase the Mg# of augite by 1.5 mol% for Fog, or 6
mol% for Fo,,. Thus, the olivine-augite system is out of equilibrium in the gabbros: more
than 5 mol% Mg# for the troctolites and 10 mol% Mg# for the olivine gabbros, leaving

~3.5 and ~4 mol% Mg# unaccounted for, respectively. It could be suggested that some
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Figure 3-11: A: The variation of Mg# of augite in the models with respect to temperature. The line for
Yang et al. (1996) is calculated on the lkbar model melts using a Fe/Mg partition coefficient for

augite/melt of 0.23. B: Comparison of the temperatures resolved using Melts5 and Yang et al (1996),
indicating that there is a discrepancy of ~50°C between the models.
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of these effects were due to closure temperature effects, however the extent of
disequilibrium of augite with respect to plagioclase in a rock is unaffected by the
presence or absence of olivine. Likewise, the analyses of the augite have purposefully
included exsolution-lamellae of orthopyroxene within the clinopyroxene in order to
approximate the igneous composition.

Therefore, factors other than fractional crystallization at 1kbar must have affected
the rocks. Note that some of the temperature-dependence discussed above is
incorporated into the Melts algorithm, as will become apparent when the model is

compared to those by other authors’ models.

4.3 What caused the high-Mg augite?

Consistently, then, augites of the Hole 735B olivine-gabbros are more Mg-rich
than predicted from the composiiion of the coexisting olivine and plagioclase. The
formétion of cumulus rocks, however, invokes two separate processes: accumulation of
crystals; and postcumulus solidification and consolidation of the crystal pile (Wager et
al., 1960; Hess, 1960). Although these processes may be related, they have different
effects on the resulting rocks and should be treated separately, particularly for potentially

open magmatic systems.

4.3.1 Accumulation of crystals, the solids:

The conditions that potentially can affect the composition of the accumulating
crystals during crystallization are shown in Figure 3-12. This figure compares solid lines
of descent calculated from fractionation-models for different conditions and melt
compositions with the coexisting plagioclase and augite of Hole 735B. We have also
included a model derived from the work in Chapter 3, where 10 wt% of gabbro is
assimilated into a primitive melt before emplacement. Near-fractional crystallization at
3kbar creates a higher Mg# of augite relative to the field for Hole 735B, while the 1kbar
model for the SWIR PMORB composition best fits the observed gabbro-compositions
overall. The damp melt, containing 0.05% H,O, clearly fits the evolved end of the

spectrum better than the dry melt. However, if Southwest Indian Ridge-type magma
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assimilated only 10% gabbroic material on ascent and subsequently crystallized at 1kbar,
the solid-line of descent is similar to the one produced by the uncontaminated 3-kbar
model (Fig. 3-12a). Troctolite-assimilation follows the same trend, although augite is
suppressed until 27% crystallization, compared to 18% for gabbro assimilation.

The effect of bulk-composition is illustrated in the Figure 3-12C, where the
AIIFZ-glass (“High Nag”) plots within the field for Hole 735B, while the solid line of
descent for a MAR-glass (Low Nay) plots below it. The model of Thy (2000), where the
author used a glass from AIIFZ at constant Kd’s and latm crystallization, fits the data
poorly, as it does not account for temperature-dependence. Thy used another starting-
composition with extremely high Na, (~3.7), a basalt-glass from west of the Rodrigues
Triple Junction (“Type 3 basalt”, Natland, 1991b). This model (not shown) fits the data
much better, and plots higher than the AIIFZ glass, but the lava is very uncharacteristic of
magmas found west of the Melville FZ (Mével et al., 2003) and is an unrealistic parental
magma. We also modeled the solid-lines of descent for the bulk-composition of the
lower, middle and upper 500-m of Hole 735B. The Na, of the bulk becomes higher while
Fe, decreases deeper in the Hole (3.1, 3.3, 3.3 and 10.3, 9.3, 8.4 respectively), resulting in
fractional crystallization models that have higher Mg# augites at plagioclase with the
same anorthite content. However, the Mg#’s are not as high as those in Hole 735B. In
fact, only the average upper 500-m of Hole 735B falls on the fractionation-trend of the
basalts in the area.

The wet melt (0.5% H,0) model fits the primitive end of the gabbro-field, but
overestimates the Mg#’s of augite in towards the evolved cumulates. Varying oxygen-
fugacities using Site 3 lavas demonstrates that higher oxygen fugacities stabilize augite
earlier on the liquidus relative to more reducing conditions (Fig. 3-12B), and when
ulvospinel becomes stable, the Mg#’s of augite become near constant with further
crystallization. Thus, very locally, increasing oxygen fugacity due to crystallization
could produce the Hole 735B gabbros plotting above the solid-line of descent at the

evolved fractionaton-trend.
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Figure 3-13: Liquid line
of descent of the
different Southwest
Indian Ridge melts and
one MAR-melt, and their
relation to the solids. A:
A suite of glasses from
the ridge (open symbols,
Johnson et al., 1990),
compared to the starting
composition from near
the Rodrigues Triple
Junction (star; Thy,
2003), and some of the
models: “MAR”=
AIl107-D20 at QFM and
1kbar; “lkbar”=SWIR
PMORB at 0.05wt%
H,0, QFM and 1kbar

85 fractionation; “3kbar
dry”’=same melt
{0 crystallized at 3kbar,
“3kbar damp” = SWIR
75+ PMORB with 0.05wt%
H,0; “cpl0” (thick gray
70 line)=the melt that
assimilated 10 wt%
65 = gabbro, thin gray line=
Site 3 5/2 at QFM+1. B:
60 = Comparison of the field
for Hole 735B gabbros
55 T from Melts and the 1kbar model to
the calculated minerals
50 r ' ' T ™ that will be in
25 35 45 55 65 75 equilibrium with the
- '—' glasses at the ridge at
lkbar (white circles) or
85 = Skbar (gray circles). The
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80 = compositions from
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coefficients using Grove
70 et al. (1992) for
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50 v . r . . temperatures from Yang
. M et al. (1996).
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4.3.2 Accumulation of crystals: the liquids:

Even if a crystallization model fits the solids, it may not fit the liquids erupted along the
ridge as we suggested for the high Nag model of Thy (2003). Figure 3-13 shows some of
the models compared to a glass-suite from AIIFZ. The most efficient liquid line of
descent-modifier is clearly the composition of the original magma (Fig. 3-13A). The -
MAR-melt clearly underestimates the Na-content in the melts, whereas Thy (2003)’s
starting composition (star) is too high in Na,O. The lkbar model fits the data best,
although the higher pressure-crystallization model, and the Melts-model with assimilated
gabbro lie close to the distribution as well. We have.calculated augite and plagioclase
compositions in equilibrium with the ridge-glass compositions in order to directly
compare them to those in the gabbroic rocks. The partition coefficients (Grove et al.,
1992; Putirka, 1999) depend on melt composition and temperature, thus we have used
both the temperatures of Yang et al. (1996) and those of Melts5 (Fig. 3-13 B,C). The
ridge glasses recalculated at 1kbar represent melts crystallized ~30-50% respective to the
SWIR PMORB melt, and most of the Hole 735B gabbros have more evolved
compositions than these (as was pointed out by Bloomer et al. (1991) and Dick et al.
(1991)). Based on fluid inclusions, Vanko and Stakes (1991) found that Unit V of Hole
735B formed 2 km below the seafloor, indicating that the upper crust was at least 1.65
km thick before the detachment exposed the lower crust. Since the upper crust in the area
is shown to have crystallized 30% before emplacement, this adds another ~500 meters to
the lower crustal budget. Increasing the pressure to 5-kbar elevates the augite Mg#’s as
much as the Melts model does at 3-kbar (at 5-kbar plagioclase starts being suppressed
with respect to augite in the Melts-model) and therefore, simply increasing the pressure
more does not produce the high-Mg olivine-gabbros either.

The observed variation in the Hole 735B gabbros, then, may not be attributed to
simple accumulation of crystals during fractional crystallization or batch equilibrium
crystallization. The most evolved rocks are also difficult to model except by using a
locally appropriate melt compositions. This also requires relatively low pressures, low

water-contents at the fayalite-quartz-magnetite oxygen buffer to accrete these gabbros,
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whereas the elevated Mg#’s require post-cumulus processes as discussed in the next
section. However, the damp SWIR-PMORB fractional crystallization model at 1-kbar

explain the overall solid-line of descent of the data.

4.3.3 Post-cumulus processes

Meyer et al. (1989), Dick et al. (2000, 2002) and Coogan et al. (2001) cited
processes within the crystal mush as the cause for the enormous variability of Southwest
Indian Ridge augite compositions at constant forsterite or anorthite in primitive olivine-
gabbros. Meyer et al. (op. cit.) described the unusually TiO,-enriched high-Mg# augite
common in the primitive Southwest Indian Ridge gabbros as buffered by the olivine in
mush while plagioclase and augite are slow to react with the melt, allowing the melts to
evolve with respect to incompatible elements but not Mg, Fe and Ni.

Coogan et al. (2001) took a more radical approach, and suggested that the entire
section of gabbros were made up from 50/50 melt and crystals. Moreover, as elements
with different partition-coefficients indicate different amounts of trapped melt, they argue
that the trapped melt moves within the mush and later returns to the eruptible magma
reservoir, even ajter fractionation of a spinel-phase. We find that the melts evolved in
our models have ~50 wt% SiO, until ~80% fractionation (when ulvospinel is produced),
as the silicates have SiO, contents similar to the melt. The melts become denser and
retain a low viscosity (Fig. 3-14) due to increasing Na,O and FeO, and the viscosity
increases abruptly after 80% crystallization. Plagioclase is also lighter than most of these
melts. The evolved, oxide-rich, cumulates at Atlantis Bank are indeed abundant, and
more than 200 felsic veins were described in the lower 1000-m of the section (Dick et al.,
2000) suggesting that fractional crystallization went to completion. Although the evolved
melts escaped into veins and shear-zones and crystallized there, we find it unlikely that
the highly evolved, interstitial melts would return from the mush into the main magma-
chamber, due to the abundance of oxide-minerals in Hole 735B suggesting that the last

melt had high viscosities.
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Dick et al. (2000) investigated the contacts between lithologic units in Hole 735B
and found mineral-composition discontinuities that are inconsistent with fractional
crystallization. They suggested that these were the result of more evolved late-magmatic
liquids migrating upwards in the section across the contacts. Angeloni and Dick (1990)
showed that cross-cutting fine-grained troctolites consistently have reversely-zoned
plagioclase, indicating melt percolation and overgrowth on plagioclase by later, more
primitive melts, but that the coexisting augites have higher levels of incompatible
elements than would be expected at their Mg#’s. Bloomer et al. (1991) described Unit V
of ODP Hole 735B to be typified by reversely zoned plagioclase chadacrysts surrounded
by high-Mg augite oikocrysts, whereas the shallower gabbros have normal zoning. This
observation is unfortunately not documented by published mineral analyses. Unit V
(274-382mbsl), a massive, almost undeformed and oxide-free (e.g. Fig. 3-7) olivine-
gabbro section, underlies the most massive oxide-gabbro sequence of the Hole. Natland
and Dick (2002) describe the Unit IV-V contact as cross-cut by a hydrothermally altered
dioritic intrusive breccia. Their description is similar to that of the migmatized aureole
around gabbro-bodies that are found at Fuerteventura, Canary Islands (Hobson et al.,
1998) suggesting that this contact is indeed intrusive. The intrusive boundary-theory is
Supported by John et al. (in press), who found evidence for re-heating events at 8.5-9-Ma
related to off-axis magmatism.

In order to evaluate the many views of the post-cumulus evolution of the Hole
735B section, it is necessary to know the elemental diffusion-distances for each of the
minerals in the gabbros (as shown in Figure 3-15), i.e. which minerals will be affected by
major-element solid-state diffusion with melts percolating through a crystal mush. In
addition, solid-state diffusion also shows the likelihood of disequilibrium augite
crystallization. We use cooling rates determined for Atlantis Bank from the data from
John et al. (in press) to estimate the potential diffusion-distances. The highest
temperatures indicate the earliest magmatic stage for each mineral, with a diffusion-
distance for the given time at this temperature. As the mineral cools, the accumulative

diffusion-distance grows, and the resulting distance at the lowest temperature is the
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Figure 3-16: Running averages (of 9) of the NiO (wt%, gray) and Fo (black) content of olivine in Hole

735B.
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largest possible diffusion distance for a given mineral if diffusion started at the highest
temperature. The Ca/Na of plagioclase, once crystallized, will not re-equilibrate with a
melt in its solid state, the Fe/Mg of augite may equilibrate somewhat, whereas the Fe/Mg
of olivine is easily re-equilibrated. Meyer et al. (1989), who studied very primitive
cumulates from 7°E on the Southwest Indian Ridge, assumed that the olivines re-
equilibrated with the interstitial melts to form the high-Mg# augites with elevated
incompatible elements. If crustal accretion is assumed to occur by fractional
crystallization, no olivines are formed at the intermediate temperatures in the model
where the olivine-gabbros actually occur in Hole 735B, and there should be no olivine to
react with. On the other hand, the magma could crysfallize dunitic and troctolitic
assemblages at the crust-mantle boundary and‘intrude as a mush (with the residues) into
the crust. In such a mush, synneusis (the tendency of plagioclase crystals to cluster
together due to surface-tension effects) will cause glomerophyric (or cumulophyric)
clusters of plagioclase-phenocrysts, and these plagioclase-chains can create a semi-rigid
network (Philpotts et al., 1998). If olivine settles out as the chains form, plagioclase will
rise towards the ceiling of the magma-chamber. When there are 25% crystals present as
chains, a semi-rigid framework may be completed, in which cumulates can mature. As
major-element solid-state diffusion is slow in plagioclase and augite, they may only
interact with the interstitial magma by dissolution, and once a plagioclase-plagioclase
grain-boundary is formed, it is nearly impossible to disintegrate by dissolution (e.g.
Chapter 4). Olivines, however, are free to exchange Fe and Mg with the melt.
Refractory melts that intrude from below will be less dense than the melts in the network,
and should therefore be able to infiltrate the mush.

Figure 3-16 shows running averages of NiO and forsterite content of olivines
down-hole. Although the scatter is misleading, the lower 1000 meters of the hole has
more NiO in olivine (average 0.057 wt% NiO with average Fo of 69.1) compared to the
upper 550 meters (average 0.0515 wt% with average Fo of 68.7). If only the olivine-
gabbros are taken into account, however, the numbers are 0.057 wt% NiO and average

Foge, and 0.074 wt% NiO and average Fo,s;. The Melts model indicates that 8%
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Figure 3-17: Compare to Figure 1: The upper black line represents coexisting augite and plagioclase, the
lower black line is the Mg# and Ca# of the evolving melt, and the gray lines are the 10% incremental
crystallization-tielines. The consequence of assimilating a cumulate representing 70% fractionated (upper
star, 1140°C) into a 50% crystallized melt (lower star, 1180°C) is to increase the Mg# and Ca# of the melt
(along the lower line where 10% increments are indicated with crosses), resulting in new cumulates
following the upper respective line. Thus, the new cumulate will have higher Mg# augite and more
anorthitic plagioclase than the original melt.
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fractionation (of plagioclase, clinopyroxene and orthopyroxene) is required to reduce the
Mg# of the melt sufficiently from the average equilibrium liquids of the upper 550-m-s to
those of the lower 1000-m. We can therefore contrast this amount of crystallization to
what is required to reduce NiO from 0.074 to 0.057 wt%. The partitioning of Ni in
olivine is dependent on the MgO of the melt (Hart and Davis, 1978), and we find D" ~21
(we used the MgO of the liquids in the 1kbar-model at the correct Mg#’s relative to the
forsterite content of the average sections). Thus, a melt in equilibrium with the olivines
in the upper 550 meters will have to fractionate 5.5 wt% olivine (plus other minerals) in
order to reduce the NiO to that of the lower 1000 meters. If the parental melts of the
upper and lower part of Hole 735B were similar, it is not fair to assume that the olivines
we analyze today have the same composition as the olivines that initially crystallized and
injected with the mush.

‘ If we assume that early oliv.ine are dispersed in a plagioclase mush-network, and
that there is melt-flow through this mush, the olivines will re-equilibrate quickly with the
interstitial melt. The interstitial olivines are sources of Mg and sinks for Fe for the
evolving interstitial melt as Meyer et al (1989) suggested. Moreover, any melt that
dissolves a pre-existing cumulate (i.e. the melt has a higher temperature than the solidus
of what is melted) will produce a hybrid melt that has higher Mg# (and lower TiO,) (see
Chapter 4). This is illustrated in Figure 3-17, where each tie-line connects a cumulate to
its equilibrium melt. Therefore, a melt at slightly higher Mg# and Ca# will be able to
dissolve rocks lower on the reaction-series (See Chapter 4 for details). The mixing-line
between the cumulate-composition and the melt composition is indicated on the figure.
Note that augite is Ca-rich (up to 22 wt% CaO), so the Ca# also increases. The hybrid
melt initially crystallizes higher anorthite-content plagioclase and Mg# augite. This
creates reverse zoning in plagioclase and augite, like Bloomer et al. (1991) observed in
Unit V and the cross-cutting troctolites. It may also additionally create high-Mg augite
with high levels of incompatible elements in them, as Meyer et al. (1989) found. As the
hybrid melt crystallizes, it will produce gradually more evolved cumulates, just like the

Melts-models outline.
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5 Conclusion

The rocks sampled in Hole 735B represent 25-90% crystallization of a primary
mantle-derived melt with Na; ~ 3 and Feg ~ 9 at crustal pressure on the quartz-fayalite-
magnetite oxygen fugacity buffer. The majority of the gabbros in the lower 1000 meters
of the Hole represent 60-80% crystallization. The upper 550 meters have a very bimodal
distribution with cross-cutting troctolites and massive olivine gabbros representing 25-
45% and 45-70% crystallization respectively, whereas the ferrogabbros represent 80-90%
crystallization. The glasses sampled along the ridge, on the other hand, represent 30-50%
crystallized relative to the same mantle-derived melt, and most of the crustal section is far
more evolved than the upper crust. If we assume a traditional view of the accretion of the
lower ocean crust, ~1200 meters of the lower crustal section has not been drilled. With
the missing upper crust, this brings the minimum total crustal thickness to ~4.4 km,
suggesting that the observed seismic Moho at Atlantis Bank is indeed the crust-mantle
boundary rather than an alteration-front as suggested by Muller et al. (1997). We find
that the olivine-gabbros have augites in disequilibrium with the coexisting plagioclase
relative to crystallization at crustal pressures, and that this 10 mol% discrepancy may be
accounted for by dissolution and reprecipitation within a crustal mush-zone due to the

intrusions of melt from below.
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Chapter 4

Dissolution Kinetics of Oceanic Lower Crust

Abstract

We have carried out dissolution experiments using natural olivine, plagioclase
and clinopyroxene, and equilibrium melting experiments on synthetic cumulate gabbro
compositions to quantify the melting kinetics of oceanic gabbros. Dissolution
experiments were carried out using olivine — plagioclase and clinopyroxene - plagioclase
mineral pairs over the temperature range of 1330 - 1220 °C at the quartz-fayalite-
magnetite buffer for durations of 0.25 to 24 hours. Isothermal experiments performed
over the temperature range of 1230 — 1105 °C defined the equilbrium phase relations in
the system. Dissolution mechanisms are similar to those found in other experimental
studies that utilized end-member mineral compositions. The experimental results are
used to assess the extent to which dissolution of cumulate igneous rocks from the oceanic
lower crust will produce disequilibrium melts compositions. The efficiency of the
reaction is dependent on the area of grain-boundaries between different minerals in a rock
that is reheated. Coarse-grained rocks (>3mm) will disintegrate internally upon
reheating, whereas finer grained rocks will melt from the outside in. If these
disequilibrium melts are allowed to mix into the ascending magma, the new magma will
have higher Na; and lower Fe, than the original. Lower crustal assimilation of gabbro
will result in the destruction of troctolites in the lower crust, and will lead to the early

onset of high-Mg# olivine-gabbros.

1. Introduction

The oceanic lower crust is dominated by olivine gabbro, generally composed of
olivine, plagioclase and augite (Coleman, 1977). It is commonly accepted that this lower
crust is formed by crystallization of basaltic magmas that ascend from the upper mantle.

However, there are two main lines of thought on the geodynamic method of accretion of
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the lower ocean crust. One is the so-called “gabbro glacier” model, whereas the other is
the “many sills” model. The former end-member is based on observations in ophiolites
(Sleep, 1975; Dewey and Kidd, 1977 and Quick and Denlinger, 1993), and developed
further to account for gebphysical observations at the East Pacific Rise (EPR) and other
magmatically robust spreading segments (Henstock et al., 1993; Phipps Morgan and
Chen, 1993). The gabbro-glacier model assumes that melt arrives directly from the upper
mantle to a shallow melt sill, where it crystallizes gabbro cumulates that subsequently
flows downwards in a near steady-state fashion. The many sills model (Pedersen, 1986;
Bédard et al, 1988, 1991, 1993; Boudier et al., 1996; Kelemen et al., 1997b; Korenaga
and Kelemen, 1997) postulates that the lower crust is accreted by the injections of
individual sills that fractionate in-situ and eject their melt to higher levels. Thus,
particularly for the fast-spreading ridges, the lower crust is accreted within the lower
crust. Modifications of this latter model are generally favored for slow-spreading ridges.
In general, truth probably lies between the gabbro glacier and the many sills
model (Maclennan et al., 2004). In either case, the extent to which the lower ocean crust
interacts with subsequent ascending magmas is largely unknown. The rate of
assimilation is naturally dependent on the heat available to incorporate and melt pre-
existing cumulates into magma, and the residence time of the magma in the lower crust.
The effect of the composition and grain-size of the assimilant, thus the compositional
effects on the magma and lower crust, has not yet been established for the oceans.
_ The potential temperature of the melts generated in the upper mantle at mid ocean
ridges could range from 1180°-1510°C (Klein and Langmuir, 1987; Kinzler and Grove,
1992), although other authors would disagree, arguing that the temperature is constant
around 1250°C (e.g. Green et al, 2000; Presnall, 2002). The upper end of the temperature
spectrum represents the fast spreading EPR. It has been documented that the EPR has a
shallow axial magma chamber (AMC) (Detrick et al., 1987) that lies on a low velocity
zone (Harding et al., 1989; Vera et al., 1990). Dunn et al. (2000) showed a 5-8 km wide
low velocity zone under the spreading center of the EPR has as much as 20 % melt

fractions within it. A second melt lens has been documented near the seismic Moho
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transition (Crawford and Webb, 2002); it has been argued that its stability is limited, as
any crystallization in the chamber causes the surroundings to heat up and melt the
surroundings in a manner that is not observed (Chen, 2001). The EPR therefore clearly
has a heat-budget that is large enough to remelt lower crustal material. At intermediate-
spreading ridges, the AMC reflector is found at deeper levels in the crust (Phipps Morgan
and Chen, 1993b; Chen and Lin, in press). The existence of shallow steady-state magma-
chambers at slower ridges is indeed debated (Sinton and Detrick, 1992), and very deep
magma chambers below the conductive boundary-layer in the mantle (Mével et al., 2002)
would not be possible to detect with the seismic techniques available today (Detrick and
Reeves-Sohn, pers comm. 2004). Erupted MORB show extensive differentiation and
mixing that require that magma chambers exist, even if only ephemerally. The evidence
of magma-chamber type processes happening before eruption at all ridges, suggest that
there should be sites that are hot eﬁough to dissolve preexisting crustal material even if
the magma-lenses evade us along the slower ocean ridges. Therefore, the magmas likely
reside for long enough to interact with their surroundings in either steady state- or
ephemeral magma chambers.

Ocean islands are also sites of elevated magma-temperatures (Watson and
McKenzie, 1991). In fact, there are Hawaiian picrites that record crystallization
temperatures in excess of 1400°C (Natland, pers comm. 2004). In Hawaii post-shield
volcanism of very different composition develops after the earlier shield-stage lavas.
Their isotopes are more like those of mid-ocean crust, and they are frequently very
alkaline in composition (Yang et al., 2003). The post-shield lavas often contain xenoliths
made out of the pre-existing, tholeiitic, lower-crust that had to be penetrated to get to the
surface (Fodor and Galar, 1997; Neumann et al., 2000). This suggests that the post-shield
stage magmas, which spend more time in the lower crust than the shield-stage magmas,
may have digested some lower crustal material on ascent.

The lower crust is generally difficult to study at fast-spreading ridges and ocean
islands due to the 2+ km of dikes and lavas that cover it and the lack of tectonic windows.

However, the lower crust is often exposed in tectonic windows at slow-spreading ridges
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(Tucholke and Lin, 1998). The gabbroic outcrops on Atlantis Bank at the slow
Southwest Indian Ridge have been studied extensively (Dick et al., 2000; Natland and
Dick, 2000, and references therein). Even the most primitive, ophitic, gabbros sampled
in the bank have high-Mg augite oikocrysts surrounding more evolved plagioclase
chadacrysts with which they are not in equilibrium at magmatic temperatures (Chapter 3,
this thesis). Nearly all these rocks have petrologic characteristics that provide strong
evidence for complex magmatic histories that may involve several magmas and potential
remelting.

The purpose of this study is to constrain on the processes of magma — cumulate
interaction that occurs within the oceanic crust. We have therefore investigated the
kinetics of melting between natural mineral-pairs representative of the those found in
Jower ocean-crustal rocks; finding rapid melting rates and unusual melt-compositions.
Unlike previous dissolution-experiments, our mineral compositions are similar to those at
mid-ocean ridges. Therefore, the melts produced in the experiments allow us to assess
the chemical changes that incorporation of lower crustal material may cause in the

ascending magmas.

2. Experimental Procedures

During the course of this study, we performed two types of experiments. The first
type was dissolution-experiments on olivine-plagioclase and augite-plagioclase mineral
pairs designed to provide information on the mineral melting kinetics in ocean gabbro
cumulates. Second, in order to quantify the kinetic controls on melting, we also
determined the solidus to near-liquidus phase relations of two synthetic CMASNF (CaO
- MgO - ALO; - SiO, - Na,0 - FeO) olivine — plagioclase - clinopyroxene cumulate-
compositions that represented bulk compositions applicable to the mineral pairs used in

the dissolution experiments.
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Tablel: Theoretical starting composition
isothermal experiment, in weight %
Label Melt Fo  Melt AK3
SiO, 53.1 50.6
ALO; 17.7 14.7
FeO 32 6.7
MgO 7.0 12.0
CaO 16.1 134
Na,0 2.9 24
Total 100 100
Mg# 79.7 76.1
Ca# 75.5 75.5

Cpx(0.9)

AK3 O
1atm
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Figure 4-1: Pseudoternary projection-plots of the melt compositions of the isothermal phase-equilibrium
experiments (projection from Grove et al., 1992). Cpx=augite, ol=olivine, qtz=quartz, pl=plagioclase.
Open squares represent AK3, closed gray squares are Fo73. The inferred phase-saturation boundaries are
indicated on the figures for reference. The Cpx-ol-qtz projection shows how the low-temperature
experiments plot below the olivine-plagioclase-clinopyroxene-melt saturation-boundary for the basaltic
system, towards more silicic compositions. Fo73 is has a very small olivine component, whereas AK3
generally follows the trends for basalts.
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2.a. Phase equilibrium experiments

Starting material - Phase equilibrium experiments were performed on two model
olivine-gabbro compositions, “AK3” and “Fo73” (Table 4-1) where the former has the
larger olivine component. Mechanical mixtures of each composition were prepared from
high-purity oxides and silicates ground in an agate mortar under ethanol for 6 hours.
Pressed pellets of AK3 or Fo73 powdered mix were sintered onto a 0.8 mm diameter Pt,;.
o5-Fe, 4 loop that was chosen to minimize Fe exchange with the pellet. The loop and
pellet were suspended in the hotspot of a Deltech DT31VT vertical gas-mixing furnace.
We controlled the oxygen fugacity by mixing CO, and H, gases and f,, was monitored
using a solid ZrO,-CaO electrolyte O sensor calibrated against the Fe-FeO, Ni-NiO, and
Cu-Cu,0 buffers. Temperature was measured using a Pt-Pt,Rh), thermocouple
calibrated against the melting points of NaCl, Au and Pd on the IPTS 1968 temperature
scale. The thermocouple junction was placed immediately adjacent to the experimental
charge, and temperatures are believed to be accurate within + 2°C. The experiments were
carried out at 0.1MPa, with oxygen fugacity buffered at quartz — fayalite — magnetite
(QFM) from near-solidus- to near-liquidus temperature. Experiments were run at
constant temperature for 5 to 119 hrs, and were terminated by drop-quenching into a
water bath. The results are listed in Table 4-2 (a, b and c).

Volatilization of sodium from the experimental charge, and mass transfer of iron
bétween the experimental charge and wire loop can be significant in 0.1MPa
experiments. We attempted to minimize the iron exchange by using a loop containing ~8
wt% iron, making it in equilibrium with tholeiite at QFM over the temperature interval of
1100°C to 1400°C (Grove, 1981). Sodium volatilization is related to sample size, gas
flow rate, oxygen fugacity, experimental duration and experimental temperature (Tormey
et al., 1987). As a result, we used larger sample sizes (100mg) and lower gas-flow rates

(0.1ml/s) to reduce sodium volatilization.
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2.b. Mineral Dissolution Experiments

Two sets of mineral pairs were used in these experiments (Table 4-3). The first
consisted of clinopyroxene (Mg# 82-84), and plagioclase (Ang, and Ang,). The second
set of experiments used Ang, plagioclase and Fo,; olivine; or Ans, plagioclase with Fo,,
olivine. The experiments were carried out over a the temperature range of 1240-1330 °C
for the olivine — plagioclase pairs and 1180-1300 °C for the plagioclase — clinopyroxene
pairs. The duration of the experiments varied from 15 minutes to 24 hours (Table 4-4).

The Ang, plagioclase, the Fo,; olivine and the augite were sampled from olivine
gabbros of homogeneous compositions from Atlantis Bank, Southwest Indian Ridge,
ODP Hole 735B, at ~1400 m depth (Natland and Dick, 2002). Due to the limited
availability and grain-size of the material from the Southwest Indian Ridge, we selected
alternative sources of plagioclase and olivine, in order to run longer experiments. The
Ang, plagioclase was sampled from a single crystal from the layered Bjerkreim-Sokndal
intrusion in Southwestern Norway. The Fog, olivine is from a granular dunite from the
Balmuccia lherzolite massif, Italy (Rivalenti, 1980). Although the Anss plagioclase and
the Fog, olivine are not exactly the compositions expected from a gabbro from the ocean
crust, they are desirable as they are natural materials with more appropriate compositions
compared to synthetic endmembers of the solid solution series.

Sample preparation and experimental procedures Each mineral was cut with a
diamond wafering-saw into parallelepipeds of roughly the same width. No attempt was
made to select a specific crystallographic orientation for any of the minerals. One side of
each piece were polished with Al,O;-paper and diamond pastes to Suym grit. The
thickness of each mineral-piece was measured with a micrometer to a precision of ~10um
perpendicular to the polished surface. The mineral pairs were placed together with the
polished surfaces in contact, and tied with a 0.8mm diameter Pt wire. Each experiment
was held at a constant temperature at the QFM buffer for a specified time in the hotspot
of a Deltech DT31VT vertical gas-mixing furnace. Each experimental assembly
achieved thermal equilibrium within 5 minutes or less after being positioned in the

hotspot. The beginning of dissolution was measured from that point on until the
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Plagioclase

Plagioclase

Figure 4-2: The experimental setup. A: Composite back-scatter electron image an early plagioclase-
olivine experiment. Early experiments were performed with the plagioclase on top of olivine, causing
the interfacial melt to become thicker due to plagioclase floatation. The melt produced is pressed to
the sides of the interface and wraps the crystals. B: A latter experiment performed with the mafic
mineral on top of plagioclase, wrapped with a platinum quenching wire. C: The appearance of an
experiment before melting. D: Schematic cross-section of the experiments after melting. The melt is
produced at the interface between the minerals and at the immediate corners, and is pressed out to the
sides. E: The appearance of an experiment after melting. The melt clearly wraps the outside of the
mineral.
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Table 3: The composition of the starting material for the dissolution experiments.

Whole-rock

analysis, Augite  Augite Olivine  Olivine

Element sample 1 Plagia Plaglb Plag?2 1a 1b Augite 2 1a 1b  Olivine 2
Sio2 52.1 SiO, 53.5 53.3 55.2 52.3 52.1 52.7 38.5 38.1 41.0
TiO, 0.4 TiO, 57 .56 1.20
Al203 15.4 Al,O, 294 30.0 28.9 2.88 3.28 2.70 .02 .01 19
FeO(tit) 4.0 Cr,05 .065 .304 .181 .004 .002 .078
Fe,0, 0.8
FeO* 47 FeO .33 .34 19 6.5 6.5 55 240 237 15.7
MnO 0.1 MnO .20 .16 .18 37 .36 .20
MgO 9.5 MgO .04 .02 .01 17.13 16.80 16.28  38.11 38.32 44.06
Ca0O 15.4 CaO 121 12.6 10.8 19.9 201 223 .07 .05 A2
Na20 2.3 Na,O 4.82 4.57 4.93 35 37 .36
K;0 0.0 K,O .06 .06 .33 .01
P05 0.0 NiO .04 .03 .03
Total 100.0 ° |Total 100.2 100.8 100.2 : 99.9 100.1 101.5 101.0 100.6 101.4
V (ppm) 220 An% 57.9 60.1 54.7
Cr (ppm) 272 Mg# 82.4 82.2 84.1 73.9 74.2 83.3
Ni(ppm) 81 Wo 42 42 46
Cu (ppm) 50 En 50 49 47
Zn (ppm) 31 Fs 8 9 7
Rb (ppm) 1 Notes: Plag=plagioclase. All minerals used are natural mineral separates cut from Hole 7358
Sr (ppm) 150 and other sites as mentioned in the text. The mineral compositions were determined
Y (ppm) 14 on the MIT electron microprobe
Zr (ppm) 26 Minerals 1a, 1b and 2 refers to those used in the AK00- AKO1- and AK3K- experiments.
Nb (ppm) 1.0 An is Anorthite % of plagioclase, calculated from the molar Ca/(Ca+Na).

Mg# is the molar Mg/(Mg+Fe) of clinopyroxene. Fo is forsterite content of olivine, and is calculated as Mg#.
All values are in wt% unless otherwise noted. The whole-rock analysis is from Coogan et al, 2000.
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experiment was terminated. The experiments were quenched in air, as it was discovered
that very little quench-growth was produced compared to the experiments that were
quenched in a water-bath. The sample assembly was cast in epoxy and cut perpendicular
to the mineral-melt interface. The thickness of each mineral was measured using a
microscope and the same micrometer as before in the center of each experiment after
5um grit polishing. Finer polishing caused the plagioclase and glass to become almost
indistinguishable in reflected light. In addition, the thickness of each mineral was
measured in the electron microprobe using backscatter-electron imaging. Both
measurement techniques produced similar results. The measurements of mineral
thickness after each experiment probably have the largest errors, because the shapes of
the partly dissolved minerals were not always uniform. Thus, we estimate the error in
thickness and measurements of each side of the experimental charge based on repeated
measurements to be ~5% relative. The absolute errors are smaller for the experiments
that melted less, as the interfaces were smoother and the geometry simpler. No attempt
was made to account for dissolution during heating or quenching, as this effect is small

compared to the precision of the thickness measurements.

2.c. Analytical techniques

Phase compositions were analyzed with the MIT 4 and 5-spectrometer JEOL 733
Superprobes, using 15kV accelerating voltage and 10nA beam current. Beam-size is
10um for glass analyses, except for some of the lower temperature experiments where
only small glass-pockets were available, and 1xm for crystalline phases. In addition, the
large mineral grains used in the dissolution experiments were analyzed with a 10um
beam. Counting times were 10-40 s depending on the elements. Data were reduced with
the CITZAF correction package using the atomic number correction of Duncumb and
Reed, the absorption coefficients of Heinrich and the fluorescence correction of Reed

(Armstrong, 1995).
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2.d. Attainment of equilibrium

Our phase equilibrium experiments were all made with synthetic compositions.
Reversal experiments were not conducted and therefore equilibrium has not been
demonstrated with respect to all exchange components. However, the Fe-Mg bearing
crystalline phases show relatively consistent partitioning of magnesium and iron into the
melt (Table 4-2B). The Kd/3We, is 0.2720.02, the Kd5s, is 0.27+0.03 and KdSpprey, is

1.07+0.2 measured in the AK3 experiments. For the Fo73 experiments Kd.oh, was

found to be 0.21+0.02 and Kdegme: 1.11 £ 0.27. The partition coefficients are close to

the expected values from other phase-equilibrium experiments, especially at these
refractory compositions (Grove and Bence, 1977; Ulmer, 1989; Grove et al., 1992).
Secondly, at least for the experiments 1170°C and higher, the mineral and melt-
compositions are homogeneous within the analytical uncertainty for each analyzed
element. To achieve very homogeneous phases for all experiments, we would have liked
to run the experiments for longer times. However, this was not practical because we
wanted to minimize Na-loss in these experiments. In fact, the Fo73 experiments were run
approximately 10 times longer than AK3 experiments, resulting in better exchange Kd’s
but at the expense of much higher Na-loss. For the purpose of comparing the equilibrium
melting behavior of these mineral pairs with the dissolution behavior, however, we feel

that our experiments have approached equilibrium to a sufficient extent.

3. Discussion

3.a. Experimental results

Phase Equilibrium Experiments: AK3 has olivine on the liquidus in the highest
temperature experiment (1230°C), and is accompanied by plagioclase at 1210°C, and
augite at 1196°C. Below the olivine-plagioclase-augite saturation boundary, at 1150°C,
we produced a second set of solid compositions; augite + plagioclase followed by
pigeonite. The minerals in these lower temperature experiments (<1150°C) coexist with

a very silicic melt and olivine was not found at these temperatures. The Fo73
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composition was not run at temperatures higher than 1190°C, as it was obvious to us that
the composition had a very low olivine component, and we therefore chose to pursue the
composition with a higher olivine component (e.g. AK3). At the highest temperatures of
Fo73, investigated plagioclase and clinopyroxene coexist with a melt with ~56 wt% SiO,.
The solidus was like in AK3 found at ~1150°C, although small fractions of unusually
silicic melts were observed below this temperature. Biggar and Humphries (1981)
showed that the temperature-difference between the olivine-clinopyroxene-plagioclase
eutectic and the olivine-free clinopyroxene-plagioclase cotectic is only 4°C. We used a
materials balance technique to assess whether the bulk composition of the experimental
charged changed during the course of each experiments. In the case of the “Fo73”
experiments the results of these calculations did not do a good job of recovering the
starting compositions. Therefore, we also recalculated the modal proportions by
excluding Na,O, as shown in italics in Table 4-2a, imprpving the errors. This improved
the materials balanc results, and did not change the modes significantly, suggesting that
the original modes are adequate. The compositions of the melts produced under
equilibrium conditions are shown in Figure 4-1 in the Olivine — Clinopyroxene —
Plagioclase pseudo-ternary projection scheme.

In these isothermal experiments, the saturation-boundary (~solidus) for the
plagioclase-clinopyroxene-olivine-melt is 1150°C, and the saturation-boundary for
augite-plagioclase-melt and olivine-plagioclase-melt is inferred to be ~5°C and ~40°C
higher, respectively, based on comparison with previous studies (Biggar and Humphries,
1981) carried out in iron-free systems.

Melting Kinetics Experiments: In the earliest experiments (Fo;;-Ang, (AK0QO- and
AKO01-), Mg#~83(Cpx) - Ang, (AK3K-)), we placed the less dense mineral, plagioclase,
on top of the mafic mineral to prevent convection in the melt following the method used
in previous investigations (e.g. Tsuchiyama, 1985, 1986). However, experiments that
melted to a significant extent, and exceeded the generation of a melt film between the
two, developed a complex geometry of melt distribution and mineral shape in the

plagioclase (Fig. 4-2 a). We found that if we placed the denser mineral on top of the
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assembly (used for the latter half of the experiments; Fog, - Ang,, and Mg#~83(Cpx) -
An,,) the geometry of disintegration was easier to characterize (Fig. 4-2 b,c). With this
geometry, the distance between the minerals stayed relatively constant and the melt was
again pushed to the sides, but now it covered the minerals towards the top (Fig 4-2 d.e).
Reaction only happened at the 2-phase interface with the melt. There was, however,
excess melting towards the sides of each mineral slice, and along some phase-boundaries
in the poly-crystals used for dissolution (Figure 4-3 a.e).

Olivine, the gabbroic mineral that has the fastest internal solid-state diffusion
(Gaetani and Watson, 2000), developed only a very narrow (tens of yms) or no
observable diffusion gradient along the actively melting interface (Fig. 4-3d, e, f),
indicating that the melting rate is faster than solid-state diffusion for Fe/Mg in olivine.
However, internally in olivine grains (Fig. 4-3f) melt-pockets originating around
impurities that has melted completely re-equilibrate with the olivine. Some
recrystallization occurred in the melt close to olivine, away from the most active melt
interface (Fig. 4-3a, ¢). In addition, rare melt-pockets were found trapped inside olivine-
grains away from the dissolving interface that have re-equilibrated with the host to form a
lower Mg# melt (Fig. 4-3f and Table 4-5).

Plagioclase and clinopyroxene grains also melted without experiencing any
internal diffusion of major elements. Plagioclase shows a very narrow (~10xm) jagged
reaction zone (Fig. 4-3b), but no significant anisotropy of melting is apparent at the melt-
contact. There is no measurable chemical difference in plagioclase composition towards
the melt-contact, within the resolution of the electron microprobe. The augite slab begins
to melt internally in the highest temperature dissolution experiments (Fig. 4-3h), but does
not show any sign of preferential melting of low-Ca pyroxene exsolution lamellae or
preferential melting of different crystal faces (Fig. 4-3g-1) relative to the plagioclase
interface.

The traditional method of treating dissolution-experiments is to define a reaction

function & = f(ﬁ) or & =f(f). These types of experiments are usually designed with one

large mineral-grain dissolving into a large volume of melt, both of known and constant
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far-field compositions. The interface between the mineral and the melt is approximately
fixed, thus the dissolution rate of the mineral into the melt and the resulting diffusion of
components through the melt can readily be measured. Our experiments, however, are
very different. At the start of each run, no melt is present between the two mineral-disks.
As soon as the minerals are heated above the melting temperature, a melt-film forms
between them. When minerals precipitate, interface-kinetics between the melts and
crystals may control the rate at which the crystals grow. However, Zhang et al. (1989)
used the interface-reaction rates from Kuo and Kirkpatrick (1985) and demonstrated that
the interface-melts are saturated with the bounding crystals after ~1 second of
dissolution, thus there is no interface-control of dissolution in our experiments. The
melt-film has a near-constant thickness, as the weight of the overlying mineral squeezes
the melt to the sides of the experiment. Each interface between the minerals and melt is
therefore moving, and the center of the melt film experiences flow of melt from the
minerals towards the center, in addition to flowing from the center of the run towards its
sides. The reaction function cannot be solved analytically with these boundary
conditions, and a thorough and extensive numerical model is beyond the scope of this
paper. We found that the most meaningful way of approaching the reaction-function is to
measure the linear loss of material from each mineral disk, in order to assess the rate of
dissolution.

Our dissolution rates are summarized in Table 4-4. Marvin and Walker (1985)
found that the melting rate at the onset of melting correlate with Vit but as soon as a steady
melt film is formed between the minerals (usually within 1-2 hrs), the newly formed
melts are smeared out to the sides of the experiment, and the melting rate becomes linear
with time. Unfortunately, they did not perform any experiments for longer than 200
minutes. We did perform experiments for as long as 24 hours, and these show good
correlation with vt and linearly with time after a few hours. Thus, only the vk correlate
with amount melted in a function that originates at the origin (Fig. 4-5a) as would be

expected for diffusion-controlled dissolution. After a few hours, continued melting
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Figure 4-4: Theoretical calculation of amount of mineral dissolved based on a dissolution rate of
2um/Ns. After about two hours, the dissolution rate appears linear simply due to the square-root
function. However, the correlation-line will not originate at Oum melted.
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Figure 4-5: A: Plot of amount of mineral dissolved in microns versus the square-root of
time. AK00/01 and AK3K refers to the two main compositions of minerals (Table 4-3
and 4-4) that was used in this study. “Van Orman” and the broken line are data from
van Orman and Grove (2000). All the trendlines are from the origin. Thin black lines
follow plagioclase, the grey line follows olivine and the thick black line follows
clinopyroxene (augite). B: The melt-compositions at the interfaces to the minerals in
the plagioclase-augite experiments plotted in terms of the mode of the melts. The melts
(L) are linear combinations of the minerals. Each interface composition is plotted at the
run temperature. The broken lines suggest the shape of the solidii, and should not be
regarded as the real thing.
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Figure 4-7: The dissolution rates for plagioclase dissolved with augite or olivine overlap when plotted vs.
AT°C above solidus.

165




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

appears linear as a simple consequence of the vt relationship (Fig. 4-4). The reaction
functions for dissolution may therefore be approximated as:

E=243%1000 x e 0 IITCC) gor augite melted with plagioclase;

E =347 *10C1 %¢ 002 fTCC) for plagioclase melted with augite;

E = 1.79*10%%) *¢ 0032fTCC) for plagioclase melted with olivine
The rates for olivine-dissolution have a poor correlation with Wt (and t), and a reaction-
function has not been calculated for olivine. For all these functions, the approximation
with t is reasonable when working with 10°s of mm’s and times less than a week, and the
dissolution-rates may used in units of mm/hr.

Dissolution rates for the plagioclase — clinopyroxene and plagioclase - olivine
pairs are plotted in Figure 4-6 along with other dissolution studies (Marvin and Walker,
1985; Zhang et al., 1989; Van Orman and Grove, 2000). Marvin and Walker (1985)
investigated the melting rates of Fog-Ans, at 0.1MPa from 10 to 200 minutes, Zhang et
al. (1989) dissolved diopside in an andesite, for 15 minutes to 23 hours at various
pressures, whereas van Orman and Grove (2000) melted diopside with ilmenite at
~13GPa for 1-6 hours. Our rates for plagioclase and augite are very similar to each other,
and the other authors’ data agree well. Note that the temperatures of their experiments
have been translated to 1 atm conditions (by subtracting 9°C/kbar, on the basis of the
algorithms from Grove et al. (1992)). At a given temperature, plagioclase melts slower
when in contact with an olivine than when in contact with an augite. For instance, Ans,
plagioclase at 1290°C melts 0.54-mm/hr when in contact with augite, but only 0.17-
mm/hr in contact with olivine. The minerals of the augite-plagioclase pairs, however,
melt at comparable rates to the plagioclase of the plagioclase-olivine pair, relative to their
solidus temperature (Figure 4-7). Thus, the intermediate (relative to the spectrum of
gabbros at Atlantis Bank) gabbro-composition that our experiments represent, would
react very effectively with a melt of a temperature of 1230°C or higher. Neither of the
individual minerals was held significantly above their individual solidii (Ans, has a

solidus of ~1320°C).
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Table 5: Range of melts from the dissolution experiments using gabbroic raw material.

Sample # Si0, TiO, ALO, Cr,0; FeO MnO Mgo Cao Na,0 K,O0 P,0; Mg# Ca# IWhat

AKO00 ol-p!

AK19 49.1 .03 21.0 77 .12 109 88 321 .04 .09 716 603 |Rimtoolivine

AK19 50.6 .00 23.1 51 .12 73 100 364 .05 .10 718 60.4 |Rim to plagioclase
AK19 50.6 .03 20.6 81 .12 95 84 317 .04 .08 675 594 [Cotectic melt

AK21 493 .01 215 71 .13 103 9.0 371 .05 .06 721 57.2 |Rimto olivine

AK21] 50.8 .01 225 67 .09 98 88 403 .04 .15 724 548 |Rimto plagioclase
AK21 484 20 19.1 .006 7.8 .16 112 115 229 .04 .12 720 73.4 |Cotectic melt

AK25 487 .18 209 83 .16 102 9.6 320 .06 .11 685 624 |Rimto olivine

AK25 496 .13 232 60 .13 86 89 402 .07 .11 721 549 |Rimto plagioclase
AK25 49.1 .11 215 .002 73 .11 102 92 329 .04 .08 715 60.6 |Cotectic melt

AK25 458 32 201 .008 136 .19 81 104 238 .05 .10 515 70.8 |Pocketinside olivine
AK20 497 31 150 .038 74 .12 109 125 225 .05 .13 724 754 ]Rimto olivine

AK20 508 .25 194 019 48 .10 82 13.0 320 .07 .20 752 69.2 |Rim to plagioclase
AK20 517 .30 179 027 67 .14 87 10.7 2.62 .05 .13 70.0 69.3 |Cotectic melt

AKO00 cpx-p!

AK22-1 53.6 37 11.8 .080 51 .13 108 150 185 .03 .17 793 81.7 |Rim to clinopyroxene
AK22-1 52.3 .17 20.6 29 .10 65 150 3.01 .02 .14 799 73.3 |Rim to plagioclase
AK22-] 504 .50 15.8 009 79 .15 105 126 219 .04 .16 703 76.1 |Cotectic melt
AK22-2 553 .33 129 057 42 .15 113 163 248 .02 30 826 783 |Rim to clinopyroxene
AK22-2 56.8 .26 179 013 37 .11 9.0 151 265 .04 .81 813 759 [Rim to plagioclase
AK18-1 53.1 41 132 033 42 .16 104 173 202 .03 .20 814 82.6 {Rim to clinopyroxene
AK18-1 53.0 34 143 030 45 11 97 158 222 03 .16 793 79.7 |Rim to plagioclase
AK18-1 508 .52 161 .014 51 .15 100 164 210 .03 .19 77.8 8l.1 |Cotectic melt
AK18-2 537 .77 101 57 .16 119 172 179 .03 .19 787 842 |Rim to clinopyroxene
AK18-2 529 .13 253 1.8 .06 3.1 133 428 .05 .10 754 63.1 |Rimto plagioclase
AK24 521 52 99 107 55 21 134 176 161 .03 .24 813 858 |Rimto clinopyroxene
AK24 49.2 31 204 .057 37 .17 80 165 208 .04 20 793 81.4 |Rim to plagioclase
AKO01 ol-pl

ak0104-1 478 .08 195 .000 83 .10 124 93 301 .05 .06 726 63.0 |Rimtoolivine
ak0104-1 51.6 .07 245 .021 47 .07 69 88 476 .08 .04 722 50.6 [Rim to plagioclase
ak0104-2 485 .13 195 .010 98 .20 11.8 86 303 .03 .11 681 61.1 [Rimto olivine
ak0104-2 50.1 .13 236 .006 57 .13 7.8 87 413 05 .01 708 53.7 {Rim to plagioclase
ak0106-1 492 07 197 .037 9.0 .10 129 87 263 .03 .15 718 64.7 |Rimto olivine
ak0106-1 503 .05 259 017 48 .09 73 80 440 .08 .14 73.0 50.1 |Rimto plagioclase
ak0106-2 489 .06 204 .010 7.3 .11 119 89 318 .01 .06 744 60.7 [Rimto olivine
ak0106-2 513 .11 240 000 46 .06 7.7 76 476 .07 .06 749 46.8 |Rim to plagioclase
AKO01 cpx-pl

ak0101 532 36 151 051 43 .03 9.7 155 248 .04 .17 80.1 77.5 |Rim to clinopyroxene
ak0101 526 32 165 .09 36 .04 82 160 260 .05 .19 803 77.3 |Rimto plagioclase
ak0101 53.8 .45 154 083 34 .11 9.8 153 234 .04 .16 835 78.3 {Cotectic melt

ak0102 537 40 145 061 45 .11 9.8 151 252 .03 .13 796 76.8 |Rim to clinopyroxene
ak0102 529 30 170 .086 40 .13 91 153 274 .05 .15 80.3 754 |Rimto plagioclase
ak0102 534 .73 139 052 38 .14 108 15.8 2,00 .03 .33 835 81.3 |Cotectic melt

ak0103 534 .52 135 .038 45 .11 106 157 211 .03 .14 81.0 80.5 {Rim to clinopyroxene
ak0103 525 44 179 .048 39 .10 89 155 255 .02 .11 804 77.1 |Rimto plagioclase
ak0103 53.8 .61 145 056 38 .13 102 158 224 .03 .15 825 79.5 |Cotectic melt

AK3K ol-pl

AK3K]1 516 .01 21.7 06 49 06 11.1 86 316 25 .00 802 60.1 |Rim to plagioclase
AK3K1 533 .00 24.1 05 33 05 79 76 443 36 .00 80.8 485 |Rimto olivine
AK3K3 508 .09 222 00 46 07 96 89 387 .25 .00 78.6 559 |Rim to plagioclase
AK3K3 526 .00 2338 00 32 00 78 81 442 40 .15 814 50.3 [Rimto olivine
AK3K4 508 .09 21.6 00 45 .05 108 83 3.05 .25 .00 81.0 60.1 |Rim to plagioclase
AK3K4 524 .06 23.7 02 35 .06 81 76 458 .40 .06 80.6 48.0 |Rimto olivine
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Table 5: Range of melts from the dissolution experiments using gabbroic raw material.

Sample # SiO;, TiO, ALO; Cr,0; FeO MnO Mgoe Cao Na,0 K,O P,O; Mg# Ca# (What

AK3KS5 50.7 .00 20.5 00 48 .04 122 86 3.06 21 .00 81.8 60.9 |Rim to plagioclase
AK3KS5 53.0 .05 242 02 27 11 7.0 7.8 473 40 .00 821 47.7 |Rimto olivine
AK3K11 499 .00 194 07 57 .01 145 83 3.14 .19 .00 820 59.2 |Rim to plagioclase
AK3KI11 533 .06 254 00 21 .06 60 79 58 41 .00 834 427 |Rimtoolivine
AK3K12 50.1 .05 193 08 61 .02 148 84 323 .15 .00 812 59.0 |Rim to plagioclase
AK3K12 536 .00 263 04 20 00 54 74 596 44 .00 829 40.8 |Rimtoolivine
AK3K18 474 .00 16.7 00 58 .06 193 64 339 27 .00 856 509 |Rim to plagioclase
AK3K18 522 .03 24.1 00 24 .00 6.7 69 557 .63 82.9  40.7 |Rim to olivine
AK3K cpx-pl

AK3K16 522 .39 119 .08 42 .01 109 153 245 .18 .00 822 77.5 |Rim to augite
AK3K16 525 25 176 00 27 00 76 143 3.17 .21 83.5  71.4 |Rim to plagioclase
AK3K17 523 .51 119 09 38 .12 109 154 197 .17 .00 83.8 812 |Rim to augite
AK3K17 51.8 30 17.6 A1 25 10 7.9 141 282 26 .00 850 73.4 |Rim to plagioclase
AK3K19 53.1 .27 153 .08 40 .13 85 143 295 24 79.1  72.8 {Rim to augite
AK3K19 53.0 .32 16.1 00 37 .08 83 142 292 .19 80.2 72.9 |Rim to plagioclase
AK3K22 526 .30 93 J0 45 .10 126 169 196 .12 .00 833  82.7 |Rim to augite
AK3K22 52.1 .13 196 03 22 .00 6.7 141 334 29 .00 846 70.0 |Rim to plagioclase
AK3K14 516 56 72 08 48 .10 141 168 1.42 .07 .00 839 86.7 |Rim to angite
AK3K14 51.4 .19 184 07 22 07 70 139 324 23 .00 850 70.3 JRim to plagioclase
AK3K26 53.6 .80 13.6 15 58 .14 95 149 257 .17 74.6  76.2 |Rim to augite
AK3K26 527 .59 16.7 08 50 .19 80 143 292 .16 .17 73.8 73.0 |Rim to plagioclase
Notes: Ol=olivine,cpx=augite, pl=plagioclase. Cotectic melt=melt compositions on sides of runs

"Rim to"= compositions next to a mineral
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Figure 4-8: A: Chemical profiles across the augite-melt-plagioclase interface in sample AK0024. SiO, is
not included as the concentrations are similar in both minerals. B: If the entire profile is diffusion

controlled, e,f—![ j_ ) should follow a straight line through the origin. C: The non-bridging oxygens per
2Dt

tetrahedrally coordinated cation (NBO/T) (Mysen, 1988) are inversely related to the polymerization of the
melt and melts to plagioclase are more viscous than those to augite. D: Fits to the data, using diffusion-
coefficients calculated from only the melts closest to the interface. Broken lines are calculated using the
classical method from Crank (1975), the full lines are using the effective binary diffusion coefficients
(EBDC) from Zhang et al., (1989). Thick black lines are Al,O; in the melt to plagioclase, thin black lines
are Al,O; in the melt to augite, thick grey lines are MgO in the melt towards plagioclase, thin grey lines are
MgO to augite. The data are dots in the respective colors, connected to the corresponding diffusion-
profiles by vertical lines. E: The melts close to the mineral interfaces follow a a near straight line for erf”.
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3.a.1. Melt compositions

We analyzed the melts in traverses perpendicular to the mineral surfaces (Fig. 4-
8). The melt compositions are linear combinations of the mineral compositions (Figure
4-5b, the melt-compositions closest to the mineral-interfaces are recalculated as mineral-
modes by simple inversion to the mineral compositions). In addition, in the experiments
where we used the oceanic gabbros as starting material, we analyzed the melt that had
been squeezed out on the sides of the minerals (labeled “Cotectic melt”). The results are
listed in Table 4-5.

If the dissolution-rates are controlled by the rates of diffusion in the melt, the
dissolution rates should be the same when we calculate them using the amount of
material dissolved, similar to the above treatment, as if we calculate diffusion-
coefficients for the melts near the mineral-melt interfaces to find the dissolution rates. In
our crystal-pair dissolution-experiments, melt migration and convection during
dissolution have modified the compositional profiles of the melt film. This approach will
therefore be an approximation, at best. Due to the difficulties regarding the smeared
melts, Tsuchiyama (1985) suggested a very different approach to calculating diffusion
rates in the melt. However, we do not find our results using his techniques satisfactory.

The concentration profiles adjacent to the crystal interfaces for Al,O, and MgO
(Fig. 4-8A), do resemble diffusion profiles. As noted in other diffusion studies (Watson,
1982) some elements (e.g. Na,0 and CaO) undergo rapid initial diffusion and establish a
steady state distribution. In addition, the chemical profile is strongly zoned in non-
bridging oxygens per tetrahedrally coordinated cations (NBO/T, Fig. 4-8C) (Mysen,
1988) indicating that the melt is strongly polymerized near the plagioclase crystal making
the melt more viscous. A quick analysis of the diffusion-profiles in sample AK0024
(clinopyroxene-plagioclase at 1271°C, ~4 hours) shows that if the diffusion-coefficient is
modeled using the opposite mineral-melt-contact as the far-field composition, the profiles
do not show diffusion behavior (Figure 4-8B). However, if only the profile next to the
crystal is used (Figure 4-8E), and the composition at the middle of the melt film is used

as the far-field melt, the diffusion coefficients may be calculated (Table 4-6).

170




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

Table 4-6: Method of calculating the dissolution-coefficients using diffusion coefficients in the melt

First: Calculate diffusion-coefficients in the melt-film at the interface to the minerals.

A: Method from Crank (1975) for a semi-infinite volume:

Calculation Result

Diffusion-coefficients (“D”) for the

C(x)~C, 7( X ) melt-interface to:
———————— e R

Ca-Go 2JDr , Plagioclase:
ALO;: 5.9%10" m%/s
C, = composition at the interface to the mineral, C,. = the far-field | MgO: 7.6*10™" m%/s
melt composition, and C(x,t) = composition of the melt away
from the interface Augite:
AlLO;: 1.6*10°° m?/s
MgO: 9.7*10" m¥s

B: Method from Zhang et al. (1989) diffusion-controlled dissolution in a semi-infinite melt reservoir.

The effective binary diffusion coefficient (EBDC) is obtained by: | EBDC’s (“D”) for the melt-interface

i ( x ) to:
erfc|—=—-a
Cxn-Co _ 2JDr Plagioclase:

- 7C,-C. erfe(-a) ALO;: 3.6¥10° m’s

MgO: 5.2¥10"* m’s
2 C, -
where a satisfies Jae® erfc(-a)=b; b= CO _? ) Augite:
s 0

. o . ALO;: 6.5%10"° m?
a is found by a numerical fit, C, = composition at the interface to MéO? 5.9%10" nrlrzlss

the mineral, C, = the far-field melt composition, C; = the
composition of the solid, and C(x,t) = composition of the melt
away from the interface.

Second: The diffusion coefficients can be used to determine the dissolution-rates:

rate=a pJB Dissolution-rates using diffusion-coefficients from A:
Plagioclase: 7.4 gm?s"? Augite: 23.5 gm™s™'?
p= density of the min.erals, Dissolution-rates using EBDC from B:
@ s the same as above: Plagioclase: 0.403 gm?s (AL,Oy) 0.5 gm™s™* (MgO)
\Eae”.erfC(—a) =b;b= G-G Augite: 0.403 gm™s™? (AL,03) 0.33 gm”s™?(MgO)

ki CS _CO k4

Dissolution-rates using measured dissolution distance:
Plagioclase: ~1.4 gm™?s Augite: 2.5 gm?s™?

Zhang et al. (1989) developed an approach for diffusion-controlled dissolution in a semi-
infinite melt reservoir. This method has been used in other single crystal dissolution
experiments (Van Orman and Grove, 2000) to quantify the dissolution process (Table 4-
6). The fit to the chemical diffusion-profile using our calculated diffusion-coefficients is
shown in figure 4-8D, and it is clear that the effective binary diffusion coefficient
(EBDC) provide better fits than the traditional diffusion coefficients. Furthermore, the
dissolution rates calculated from the diffusion-coefficients (Table 4-6) are smaller for
Zhang et al. (1989) than the rates determined by volumetric dissolution (Table 4-6). This

is probably because much of the melt has been pressed out of the interface to the sides of
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the experiment. The measured dissolution rate lies between the two determined from the
method using the diffusion-coefficients. We therefore conclude that dissolution is

controlled by the diffusion in the melt-disk between the minerals.

3.b. How efficient is dissolution?

In his classical paper on assimilation, Bowen (1928) identifies three general
mechanisms by which rock/magma chemical reactions may occur. These are: a) reaction
of the melt with minerals that are unstable in it to produce new stable minerals; b) direct
solution of unstable minerals into the melt; and c) fusion or partial fusion of country-rock
or xenoliths and subsequent mixing with the magma by diffusion in the molten stage. All
these processes consume energy that must be accommodated by crystallization in the
melt if the melt is near or below its liquidus.

Liang (1999) states that almost all dissolution in magmatic silicates is controlled
by the diffusion of mass in the liquid, as the diffusion in the liquid is much faster than in
the solid-solutions. The chemical disequilibrium between a solid phase (crystal) and a
liquid causes dissolution below the solidus of the crystal and require simultaneous

diffusion of heat and mass (Kerr, 1995; Tsuchiyama, 1986; Woods, 1993).

3.c. Dissolution of gabbro in the lower ocean crust

The lower ocean crust can interface with ascending magmas in several ways while
it is conductively cooling. The efficacy of diffusion of heat into the country-rock
depends on the geometry of the interface, and the size of the heat-reservoir. If the magma
is a stagnant dike, the interface temperature between the dike and the wall-rock will never
exceed half of the difference in temperature between them presuming that the heat
diffusivity in the melt and solid are the same (Turcotte and Schubert, 1982). A flowing
dike or convecting magma-chamber represents a more efficient heat-reservoir, since
convection redistributes the heat, and the temperature of the wall-rock may rise towards
that of the magma. In addition, new injection of magma will also increase the available
heat. However, a xenolith stoping into a magma, completely encapsulated, would be the

most efficient geometry to heat a wall rocks to magmatic temperatures.
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Table 7: The thermodynamic properties of the minerals at 1250°C

Diopside An60 AnsS4 ¥o90 Fo73 Fo82
AHf (J/mol) 133228 94254 91556 117594 112716 107969
Molecular weight (g/mol) 216.6 271.8 270.9 147.0 147.0 147.0
Cp solid (J/mol-K) 268 350 349 192 196 194
Cp liquid (J/mo}-K) 345 399 395 265 260 263
Molecular volume (cm®) 68.5 103.5 103.6 46.1 46.5 46.3
T (K) of fusion 1664 1650 1624 2096 1981 2042

1573

T (K) solidus (Augite82) 1613 1593 1773 1873
Density (g/cm’) 3.16 2.63 2.62 3.19 3.16 3.18

Note: Source of data given in text
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The lower crust at fast-spreading ridges is thought to contain a mush-zone with <
20% melt (Dunn et al., 2000); i.e. the system is above or close to the solidus. If a magma
dissolves a xenolith of different isotopic and trace element signatures than itself, the
effect on the hybrid magma composition will not be hidden by subsequent crystallization.
Melts saturated with olivine only will show the effects of assimilation on its major-
element compositions more than multiply-saturated melts. The addition of a primitive
melt with only olivine as a liquidus phase into the lower mush-zone below the ridge may
breakup previously generated networks of minerals (Philpotts and Dickinson, 2000,
Jerram et al., 2003) and stope rocks into the magma. Bedard et al. (2000) reviewed the
concept of syntexis (the processes, mechanical and chemical, by which magmas react
with and assimilate their host rocks). They stated: “it seems self evident that host-rocks
and xenocrysts will dissolve into an invading melt only if they are exposed to it” as an
argument to support porous melt-flow through pre-existing cumulates. However, if
enclosed in hot magma, xenoliths with two- and three-phase mineral boundaries
(“triplejunctions™) with solidii significantly below the magma-temperature, the xenolith
melt along the internal mineral-boundaries when exposed to the heat of the magma. The
thermal instability of the phase-boundary requires it to melt, as this is the only way to
cool the interface-melt towards a thermally stable condition. We will show that the
cumulates only need to be exposed to this heat from the ascending melts, and that if the
melts do not escape from these cumulates, but crystallize in-situ, they still have a
profound effect on the mineral-compositions.

Our melting-rates allow disintegration of a xenolith in hours to days. If a gabbro
(i.e. ~50/50 augite/plagioclase) becomes heated above the solidus, the boundaries
between the minerals will start to melt. Figure 4-9 demonstrates theoretically how fast a
coarser-grained rock will likely melt. At 1240 °C, the slide in Figure 4-9A will look like
4-9B and at 1270°C like 4-9C, after only one hour. However, as we have repeatedly
shown in our experiments, plagioclase is buoyant in this melt, whereas augite (and
olivine) is denser. If a mineral melts on all sides, it will settle as high or low as possible
(Figure 4-9D). Therefore, a close contact with efficient melting will be maintained along

at least one interface at all times.
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Figure 4-9: A: A thin-section in parallel light of olivine gabbro sample JR31-12-1 from Atlantis Bank. The
ophitic minerals are augite, the long laths are plagioclase, and the other minerals are partially altered
olivine. B: As a thought experiment, we draw the boundaries between plagioclase and augite and let the
thickness of the lines represent amount dissolved on the mineral-boundary. Here, each mineral melted 0.1
mm each, as indicated in white. C: Each mineral has melted 1mm each. D: This sketch is of the lower
right corner of the slide, with each grain melted 0.25mm. Here we let the minerals settle to their
gravitationally stable level. Plagioclase will rise and clinopyroxene will sink relative to the melt. Thus, a
tight connection is kept at least at one face of each mineral.
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Thermodynamic considerations

As melting and dissolution generally are endothermic processes, “inclusions pass
into solution by precipitating their heat equivalent of the phase with which the liquid is
saturated” (Bowen, 1928). However, Bowen also stated that the reaction between a melt
and an assemblage higher up in the reaction series thus would be exothermic. Addition
of rocks from lower in the reaction-series is endothermic and causes the system to cool
gradually (e.g. addition of a gabbro to a primitive, mantle-derived melt). It is not clear,
however, that the addition of gabbroic xenoliths with the accompanying fractionation of
olivine causes the melt volume to reduce significantly.

Our results indicate that the phase-boundaries of lower crust from ocean ridges
will melt efficiently and out of equilibrium at a temperature above the plagioclase-
clinopyroxene-melt saturation boundary at ~1150°C (i.e. gabbro) and plagioclase-olivine-
melt saturation boundary at ~1195°C (i.e. troctolite) or higher. The heat of fusion (AHy)
and conductive heat-loss to the surroundings controls how effective the melting will be in
infusing the ascending magmas with lower crustal material. The AH{’s of the minerals
(calculated for 1250°C, Ghiorso and Carmichael, 1980) are listed in Table 4-7. The heat
capacity (Cp) used for the system is 1.59 J/g°C (Robie et al., 1978). Stoping of xenoliths
is the most efficient method of reheating wall-rock material by ascending melts. Other
methods, including direct heating of the wall rock by a moving magma may be important,
but will possibly not provide much new melt to the main magma-chamber as it will
remain trapped in the wall rock where it is produced. We will consider two main
scenarios: The stoping of gabbro-, or troctolite-xenoliths into a primitive magma (Table

4-8).
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Table 4-8: Stoping of gabbro or troctolite-xenoliths into a primitive magma

Thermal re-equilibration of a xenolith with ascending magma; the resulting temperature of the magma:

(CpAugile *M Augite CpPlag * MPlag) * (Tmagma_ TXenoliIh)

AT =
Cp System *M

System

T=temperature; Cp = heat capacity of the mineral, M=mass (grams) of mineral or magma.
Therefore:
If the initial magma is: 1250°C
Add 10 wt% gabbro xenolith at 1150°C (i.e. solidus)
= ~9°C drop in magma temperature
Add 10 wt% troctolite xenolith at 1190°C (i.e. solidus)
= ~3°C drop in magma temperature
= (The subsequent heat of fusion due to new crystallization is ignored.)

Thermal re-equilibration of a xenolith with ascending magma: how fast does it happen?

X= JDz, D =0.008cm?>/ s; X=distance, t=time in seconds
5 c¢m cube: 16 minutes; 20 cm cube: 8 hours

Need to compensate assimilation of the xenolith by crystallization in the magma to prevent heat-loss/ -gain

AH = M ,AH} - M .AH }; Kelemen (1990)
AH=heat of fusion, M=mass (grams) a=assimilated, f = “of fusion”, c=crystallized.

If 10 wt% xenoliths (relative to the magma) just below their solidus are emplaced into a
primitive magma by stoping, assuming isenthalpic conditions, the temperature of the
magma will only drop slightly (Table 4-8). If the magma is not above its liquidus, it will
crystallize to compensate for the heat-loss. The rate of thermal re-equilibration is
dependent on the size of the xenolith. When the temperature inside the xenolith
oversteps the melting-temperature of the mineral-boundaries, the minerals starts to
dissolve independently of the surrounding magma. The mono-mineralic phase-
boundaries in contact with the surrounding melts have significantly higher temperature
solidii, and will therefore dissolve more sluggishly. Assume the mineral-grains of our
idealized xenolith are 1-cm cubes, and the xenolith is a 20-cm cube with the mineral-
grains stacked randomly, almost all grains will touch a different mineral and start melting
upon emplacement. The melting starts along the outer zone and progresses inward as the
heat diffuses. Philpotts and Dickinson (2000) showed that plagioclase-frameworks
produced during crystallization keep a rock coherent until 75% melting (by volume).
Even still, our gabbro-xenolith will then completely disintegrate in less than 45 hours
supplying the magma with a melt of similar viscosity and density as itself (Figure 4-10),

together with 25 wt% xenocrysts of augite and plagioclase (relative to the initial ’
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Figure 4-10: The viscosities of the melts produced in our dissolution experiments calculated using Bottinga
and Weill (1972). The results are compared to viscosities calculated for lavas from the Southwest Indian

Ridge.
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Figure 4-11: The relative fraction of olivine that must be crystallized in order to equal out the heat balance
for dissolving gabbro or troctolite. Top: Volume; middle: molar; bottom: grams.
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Figure 4-12: A: The geometric area of contact between the minerals of a 20cm bimineralic (50:50) cube for

varying grainsizes. B: The heat-loss from melting after one hour at different temperatures and grainsizes.

C: The fraction of melting relative to the volume of the original xenolith after one hour. D: the temperature

drop calculated per hour due to melting on the boundaries. E: The thermal re-equilibration of the xenolith

calculated with and without the heat-loss due to dissolution for varying grain sizes in one hour. The results

for grain-sizes less than 3mm yield heat-losses so large that they prevent the heat from penetrating the
xenolith.
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xenolith), possibly chained or clustered. A 20 cm xenolith-cube of troctolite will
disintegrate in 8 days.

During the melting of the xenolith, the magma itself must compensate for the
heat-loss due to the reequilibration and heat of fusion of the minerals. The olivine-
saturated melt surrounding the xenolith will therefore start precipitating olivine as the
temperature drops in the xenolith’s immediate vicinity. In order to be isenthalpic (~no
heat lost or gained), AH has to be 0. The relative amount of olivine that has to be
precipitated from the melt in order to accommodate the heat-loss due to the melting in
our experiments is shown in Figure 4-11. Again, assuming isenthalphic conditions (i.e.
no heat-loss to the surroundings), if the xenolith melts equal molar amounts of
plagioclase and augite, the magma can compensate by crystallizing ~59% as many grams
of Fog. This is both because the AH; for refractory olivine is high, and because
plagioclase has a much smaller density than olivine (Table 4-7). In fact, by volume,
balancing the heat by crystallization of olivine causes the volume of the melt to increase
by 1.2%. A 20 cm xenolith-cube of troctolite cause crystallization of ~58% as many
grams of Fog and the melt volume will increase by 0.4%. The volume-change depends

mostly on the large density-difference between the mafic minerals and plagioclase.

3.d. The effect of grain-size

The previous calculations were performed as a simple two-step calculation, and
thus ignored the effect of incipient melting upon the heating of the xenolith. It is clear
that the grain-size of a given xenolith is important regarding the amount of heat that is
lost due to melting on the phase-boundaries. During the melting-process, the solids must
be super-heated relative to the solidus of the phase-boundaries (Wood, 1993). Once the
minerals at the phase-boundaries are superheated, the phase-boundaries melt, as this is
the more stable state. If the phase-boundaries are close to each other, the melting may
cool the xenolith back down to the solidus-temperature. If the phase-boundaries are far
enough apart, the heat-loss due to melting is not sufficient to bring them back to the
saturation-boundary, and the coarser-grained xenolith-interior can be heated and melt.
This provides a mechanism where xenoliths can provide super-solidus melts that are

linear combinations of the mineral-phases, causing the entire xenolith to disintegrate.
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Figure 4-12A demonstrates the potential phase-boundary area for a 20cm
xenolith-cube consisting of two phases (1:1) stacked randomly with varying grain-sizes.
Since this resembles potential Hole 735B gabbro-xenoliths, we have used the
thermodynamic data for typical Atlantis Bank plagioclase and diopside to model the
melting. In basaltic systems, troctolite has more plagioclase than olivine, and therefore
has a smaller area of two-phase boundaries. The possibility of superheating of the solids
during melting of the phase-boundaries is therefore higher in troctolites than in the
gabbros. Smaller grain-sizes provide more volume-loss on the phase-boundaries relative
to the xenolith. Therefore, the heat supplied by the magma may not be able to penetrate
the xenolith at a rate that is faster than the melting process can cool the rock.

A small amount of heating in a fine-grained rock would cause a large fraction of
melting (Figure 4-12C), and quickly cause a substantial heat- and temperature-loss
(Figure 4-12B, D). A fine-grained gabbro-xenolith would therefore be prevented from
thermally re-equilibrating with the melt internally and would instead experience
dissolution along its surface. However, if the grains are 20.3cm, then the grain-boundary
area is small enough, and the mineral-volume melted in one hour is less than 1% of the
original xenolith. This results in less than 10°C temperature-drop due to the melting.

If we model our xenolith as infinite in Y and Z (i.e a one-dimensional model), this

provides a simple calculation for the heating of the xenolith in the melt:

* (T, T)*[ f{§+]\ /;: 1\]

Tx.n= 1T\ \2,/‘/]

1y
2
K*t

H
a2

E=—, 1=

where K is the thermal diffusivity (= 0.008 cm’sec™), T is the temperature at any given
place in the X-direction, T, is the original temperature at the intrusion time in the
xenolith, T is the temperature of the melt, a is the half-width of the xenolith, and t is the
heating time in seconds. We can then subtract the heat due to melting. In our one-hour
model, we found ATpene = 9:495*107% *(1/g(m))* eCETHOHTCO)  (g—orain-size) by an
exponential fit. Therefore 7, = T(X. 1)~ AT,pnine. Figure 4-12E shows how this affects the
heating of the xenolith. Cooling of the melt next to the xenolith, as shown in Figure 4-12,

would cause it to crystallize, though the thermal effect of this on the melt and xenolith is
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Figure 4-13: The mechanism of dissolution of a xenolith. A: Time 1: A fine-grained
xenolith (gridded square) is penetrated by heat (orange) from the surrounding magma
(black), causing the minerals to melt in the surroundings. Due to the volume of the melt
produced, the dissolution consumes so much heat that none penetrates deep into the
xenolith (white=T<solidus). B: Time 2: The same xenolith has generated a mush-zone
(much like that described by McLeod and Sparks (1998)) around it, leaving the interior
unheated. This creates xenocrysts smaller than in the initial xenolith. C: Time 1: A
coarse-grained xenolith with the same amount of melting on the mineral-boundaries as in
A has much less melt by volume. Thus, the heat of the magma is able to penetrate into
the interior of the xenolith. D: Time 2: The outline of the xenolith is larger than that of B
at the same amount of melting. The melt is released either by being compaction, or total
disaggregation where (large) xenocrysts are released from the xenolith.
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not considered directly here. Again, only xenoliths with grain-sizes =3mm will the
support superheat in the solids relative to the solidus of the phase-boundaries. Xenoliths
with grain-sizes < 3mm will be effectively insulated by melting of the outer layer of the
xenolith, effectively preventing heat-transfer into the xenolith (Figure 4-13). In fact, if
the xenolith has grain-sizes ~0.1mm, the melting overwhelms the surface layer in less
than 1 minute. Therefore, fine-grained rocks will disintegrate by melting on the outer
surface only, whereas larger-grained rock may melt internally and disintegrate after a
large fraction of disequilibrium melting.

Our results may explain why fine-grained diabase is frequently found as unmelted
xenoliths in lavas, and why layer 2B (the sheeted dikes) is thermally stable and is hard to
melt even with a stable magma-chamber lying right beneath it (Sinton and Detrick,
1992). A seismic layer 2B, composed of typical fine-grained sheeted dikes, will be
insulated due to preferential melting along its base in contact with a magma-chamber.
This effectively prevents the heat transport upward and the rocks are not easily
disaggregated and assimilated into the melt. Likewise, it has been observed that fast
ridges have finer-grained gabbros compared to slow ridges (observed by Dick et al.,
2002, and quantified using crystal-size distributions by Coogan et al., 2002 (EPR); Meyer
and Sapp, 1994 (Hole 735B)). In fact, the slow spreading ridges often have ultraphyric
lavas containing large grains (>3mm) of plagioclase (Mével et al., 2002), suggested to be

xenocrysts (Coettze, 2001).

3.e. The effect of mineral density

We found that the melting rate slowed down in our early experiments as the
minerals floated apart, and the melting-rates are thus faster if the minerals are kept in
close contact. Plagioclase is buoyant (p~2.7g/cc) and clinopyroxene is dense (p~3.2g/cc)
relative to the melt produced within the xenolith, allowing the minerals to separate if
there is no rotation of the xenolith. If the olivine precipitating from the melt uses the
xenolith to nucleate on, it might become completely capped by the olivine, further
accommodating the separation of the minerals, since the release of the minerals to the
magma will not happened independently of the others. If the enclosure is complete,

pressure might start rising inside the xenolith, and failure of the olivine-layer may cause
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catastrophic mixing with the surrounding magma. The now isolated plagioclase crystals

will rise and the clinopyroxene and olivine will sink.

3.f. Geochemical consequences of syntexis

At least for major elements, xenoliths that melt out of equilibrium will not
significantly equilibrate by solid-state diffusion with the magma until they are
disaggregated into it as mono-mineralic clusters or are far enough away from other
xenocrysts. The interstitial dissolution-derived melts formed within the xenoliths have
similar viscosities as magma with the same temperature, and should therefore be able to
readily mix with it following disaggregation (Figure 4-10).

If gabbro-xenoliths are assimilated into the ascending magma in this way, the
liquid line of descent (LLD) will be disturbed (Figure 4-14, bottom). Normally, an
olivine-saturated magma (a) will precipitate olivine along path 2 until the melt is of
composition ‘b’ at the plagioclase-olivine-melt saturation-boundary and proceed towards
the olivine-plagioclase-augite-melt saturation-boundary at ‘e’. However, ‘pl-ol’ and
‘cpx-pl’ represent typical melts produced in our melting-experiments. If melt ‘a’
assimilates a gabbro xenolith-suite, ‘cpx-pl’, and accommodates the heat-loss by
crystallization of olivine, the melt will start to follow the curved path 1. If the melt
assimilates troctolitic xenoliths (pl-ol), it will start to follow curved path 3. ‘e’ is the
olivine-plagioclase-augite-melt saturation-boundary at latm, and the boundary moves
downwards with pressure (white squares representing 2, 4 and 8kbar, respectively). If
gabbro-assimilation happens at lower crustal pressures (~2-3kbar), then less troctolite
will be initially produced before augite starts crystallizing. The melt that forms the initial
olivine-gabbro assemblages at the 4-phase saturation boundary will therefore have higher
Mg#’s and Ca#’s than the melt following path 2. Assimilation of troctolite, however,
brings the liquid onto the plagioclase-olivine-melt saturation boundary higher up towards
“pl-ol’, and causes more, high Mg#, troctolite to form. Since the mafic minerals dissolve
without solid-state re-equilibration the Mg# of the consumed solid becomes the Mg# of
the xenolith-derived melt causing elevated Mg#’s in the hybrid melts. Figure 4-14 (top)
shows that gabbro-assimilation (the arrow with Cpx-pl) creates melts that have a larger

clinopyroxene-component compared to the melt that only crystallized olivine (“Ol frac”)
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Figure 4-14: The pseudoternary projection (as in Figure 1) of the potential compositions of melts that have
assimilated lower crustal material. A: The black arrow shows the LLD of a primary melt that has just
crystallized olivine (Ol frac), has in addition assimilated gabbro (Cpx-pl) and has assimilated troctolite (Ol-
pl). The experimentally determined saturation-boundaries are indicated (right to left) for 1atm, 2kbar,
4kbar and 8kbar. B: a=the mantle derived, primary melt (Kinzler and Grove, 1992); pl-ol=troctolite; cpx-
pl=gabbro; e=4-phase saturation boundary; grey arrows point to mineral compositions; gray lines show the
vectors from the melt to the lower crustal compositions; b=where 2 intersects the plagioclase-olivine
cotectic: black lines=cotectics; broken black line is the projected field for spinel; Plag=100% plagioclase;
gray squares are basalt glasses from the entire Southwest Indian Ridge. Curve 1 is fractionation of olivine
only, curve 2 indicates gabbro-assimilation while fractionating olivine, and curve 3 indicates assimilation
of troctolite while fractionating olivine. See text for additional explanation.
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Figure 4-15: A-C: The chemical effect of assimilation of lower crustal material. The heat is balanced by
fractionation of olivine. The tag on the lines indicates 10% assimilation or crystallization. Mg#=molar
Mg/(Mg+Fe). D: The effect of assimilation of 10wt% gabbros or troctolite on a primary melt composition.
Klein and Langmuir (1987) suggested that the global trend of the basalt compositions emulate the potential

temperature of the mantle. High temperatures cause higher extent of melting than lower temperature
melting of identical sources. :
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giving the appearance of originating at lower pressure. Troctolite-assimilation, on the
other hand, makes the melts have less augite-component and more olivine component,
causing them to appear as if they crystallized at a higher pressure, possibly causing the
local trends described by Klein and Langmuir (1989).

In summary, melts produced by dissolution of cumulates will have higher Mg#’s
than the liquids that originally precipitated the cumulate minerals. If these dissolution-
produced liquids are added to a MORB melt, the resulting mixed melt would appear more
primitive than the melt that was left from the initial crystallization of the cumulates.
Mixing of xenolith-derived magmas into a mantle-derived magma as described above
will increase the Na,O content of the magma, and decrease the FeO-content (Figure 4-
15). However, the CaO/Al,O; ratio moves in opposite directions, gabbro assimilation
increases the ratio, whereas troctolite assimilation decreases it. Therefore, with respect to
the “Global trend” of Klein and Langmuir (1987), gabbro assimilation into primitive
magma makes the hybrid melt appear as if was produced by a lower degree of melting,
whereas assimilation of troctolite moves the melt along the local trend of Klein and

Langmuir (1989).

4. Conclusions

We have shown that the lower ocean crust melts efficiently when exposed to
ascending melts at ocean ridges. We find that average plagioclase-olivine and
plagioclase-augite pairs from the lower crust at the Southwest Indian Ridge have solidii
at 1195 and 1150°C, and melt fast and out of equilibrium at temperatures significantly
above the solidii. Dissolution experiments performed using natural, average olivine —
plagioclase and clinopyroxene - plagioclase mineral pairs, under conditions applicable to
oceanic magmatism, show dissolution mechanisms similar to those found in other
experimental studies that utilized endmember mineral compositions.

The experimental results indicate that melting of oceanic lower crust may produce
disequilibrium melt compositions. However, lower crustal material can only be easily
and pervasively superheated relative to the solidii of the phase-boundaries if the grain
sizes are sufficiently large. Coarse-grained rocks (>3mm) will disintegrate internally

upon reheating, whereas finer grained rocks will melt from the outside in. The resulting
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disequilibrium melts are linear mixes of the mineral-compositions. If these melts are
allowed to mix into the ascending magma, the new magma will have higher Na; and
lower Fe; than the original emulating the global trend of Klein and Langmuir (1987).

Assimilation of gabbro into magma with only olivine on the liquidus forces the
liquid line of descent towards the olivine-plagioclase-augite-melt eutectic, effectively
suppressing the formation of troctolite as it brings the liquid onto the plagioclase-olivine-
melt saturation boundary closer to the olivine-plagioclase-augite-melt saturation
boundary. Thus, crustal assimilation of gabbro will result in the less troctolites in the
lower crust, and will lead to the early onset of high-Mg# olivine-gabbros. Troctolite
assimilation, on the other hand, leads the liquid line of descent further up on the
plagioclase-olivine saturation boundary, producing more, and more primitive-looking
troctolites, causing the hybrid melts to define the local trends of Klein and Langmuir
(1989).

Caution should be taken when using basalts and gabbros to deduce the extent and
pressure of melting in the mantle and crystallization in the lower crust and estimating
crustal thickness (e.g. Klein and Langmuir, 1987; McKenzie and Bickle, 1988). Instead,
the entire crustal budget should be known, including lavas, dikes and gabbros, so that the
effect of assimilation between the ascending magmas and the lower crust can be

eliminated.
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Chapter 5
Mineral chemistry of gabbros from Atlantis Bank

outside Hole 735B

Abstract

We have analyzed the major element compositions of the magmatic minerals of 99
gabbros from on and around Atlantis Bank, South West Indian Ridge, including the top
carapace of the bank, the Western Wall, and the slopes to the north and the south,
covering an area of almost 660-km®. Samples from the northern area have the most
primitive magmatic minerals, extending to ferrogabbros with evolved mineral-
compositions. The southern rocks are all evolved, including layered olivine-gabbros
sampled at gabbro-peridotite contacts. Gabbros from the Western Wall and the top of the
bank have intermediate compositions. Despite the large variations in mineral chemistry
in our samples, the primitive and evolved ends of the ODP Hole 735B spectrum are not
present in our data. No plagioclase with anorthite contents higher than An,, s has been
recovered, anorthite higher than Any, is rare, and no magmatic plagioclase has been found
with anorthite below An,,. Likewise, augite compositions generally range from 60 to
86.3 molar Mg/(Fe+Mg)*100 or Mg#, where Hole 735B augite compositions range from
54 to 89. Although we have sampled the area extensively, we find that, like the gabbros
from Hole 735B, the surface samples represent melts that have crystallized 50-90%
relative to mantle-derived compositions. As discussed in Chapter 3, the overall variation
of the gabbros is broadly consistent with control of the liquid-line of descent by fractional
crystallization (modified by post-cumulus processes). If the lower crust was accreted by
fractional crystallization, large amounts of troctolite should exist somewhere in the
lowermost crust or intruded into residual mantle at depths below what is exposed on the
sea-floor or drilled in Hole 735B.

As in Hole 735B, augite is more magnesian than expected for any coexisting
plagioclase anorthite content, and plagioclase and augite are frequently reversely zoned.

TiO, contents of augite vary inversely with Mg# at all levels of evolution, even after
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magnetite and ilmenite crystallized, suggesting extensive reaction, dissolution and
reprecipitation within the cumulate pile. A simple fractional-crystallization model would
therefore not be suitable. We propose an alternative model where some originally
primitive cumulates may have been re-homogenized and transformed by later, interstitial

melts.

1 Introduction

The nature of accretion of the lower crust at spreading-ridges has mainly been determined
by the study of ophiolites as analogues. The origin of many ophiolites is unfortunately
uncertain (e.g. Miyashiro, 1979), and the exact crystallization conditions and primary
melt compositions may be different at modern ocean ridges.

Tectonic windows make the investigation of the lower ocean crust in the modern
oceans possible, and current technology makes them accessible. Atlantis Bank is a well-
known example of an paleo-inside corner high found at the ultraslow spreading
Southwest Indian Ridge. It is located 11-Ma off axis, south of the present-day rift valleys
on the eastern side of Atlantis II Fracture Zone (Dick et al., 1987). Spreading rate is
asymmetric, 8.5-mm/y to the South and 5.5-mm/y to the North. The 700-meter deep
platform and its surrounding slopes represent the largest outcrop of gabbroic rocks known
in the modern oceans. The lower crustal section is exposed along a low-angle
detachment-fault surface that rooted in the dike/gabbro transition, or possibly in a
shallow magma-chamber or crustal mush-zone (Dick et al., 2001). The exhumation
exposed lower crustal rocks for 4-My of seafloor spreading at the ridge, and we have
mapped gabbroic outcrops over 660-km” (Figure 5-1) extending 39-km in the plate
spreading direction (Dick et al., 2001). ODP Hole 735B provides a 1500 meter deep
vertical section, contributing to a 3D perspective of the platform. In addition, Hole
1105A was drilled about 1.3-km northeast of Hole 735B and penetrated 158-m
(Shipboard Scientific Party, 1999).

The Western Wall of Atlantis Bank faces the Atlantis II Transform Valley.

Altered mantle rocks are exposed on the trench wall, more than 2000-m below the bottom

depth Hole 735B to the northwest and < 500-m to the southwest an at all depths




-32°30'S

-32°40'S

-32°50'S

Figure 5-1: The geology of Atlantis Bank (Dick et al., in prep). A thick contour-line outlines the bottom of

Hole 735B.
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shallower than the Hole along the transform wall to the west (Fig. 5-1). The Northern
Wall faces the termination of the detachment with pillow basalts exposed to the north.
The Eastern wall has two down-faulted blocks that terminate in a volcanic terrain to the
east. The detachment break-away zone to the south has not yet been found, although it is
inferred morphologically from apparent constructional volcanic edifices that replace the
gabbro-dike terrain south of 32° 52" S.

Bloomer et al. (1991), Dick et al., (2000, 2001) and Coogan et al., (2001)
observed that the expected primitive section of cumulates is missing in Hole 735B.
Coogan et al (op. cit.) argued that Hole 735B was drilled closer to Atlantis II Fracture
Zone than to the magmatic segment center (AN-1) and the authors therefore proposed
that the missing cumulates were either deeper in the section towards the crust-mantle
boundary, or towards the eastern wall of the bank if not in the mantle itself. They also
suggested that the evolved nature of the lower crustal rock is due to incorporation of large
amounts of trapped melt. Serpentinites west of Hole 735B represent gouge intruded
laterally along the detachment fault, and show that these locally overlie the gabbro
massifs west of Hole 735B (Fig. 5-1) (Dick pers. comm.). Dick et al (1987) and Hosford
et al (2003) showed that Atlantis Bank is the center of a small sub ridge-segment and
Muller et al., (1997) found the seismic crustal thickness is 5+1-km close to Hole 735B,
thinning towards the sides of the platform. An extensive sampling-survey was performed
on and around Atlantis Bank to allow us to constrain the regional distribution of
lithologies and the magmatic mineral-compositions in both time and space.

The results of major element mineral analysis of gabbro samples from James
Clark Ross 31 (“JR-31”) Bridge (“BR)- and British Geological Survey (“BGS”)-cores
and dredges, and SHINKAI 6500 dive samples from the MODE 98 and ABCDE
expeditions to Atlantis Bank are reported here. The purpose of this paper is to describe
the 3-D distribution of mineral-compositions on and around Atlantis Bank and to find the

primitive, missing cumulates, or explain why they are missing.
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Figure 5-2: Sample locations for this study. The thick gray contour line indicates the termination of Hole
735B, and the thinner gray lines show the geographic sample divisions discussed in the text.
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2 Materials

" The rocks from this study are sampled from the top and sides of Atlantis Bank.
Site collections were chosen based on lack of alteration, number of useful samples in
each collection and density of sampling in a given area. We attempted to analyze
magmatic plagioclase and clinopyroxene (+ olivine and orthopyroxene) for each sample,
and if one of these two were completely altered to metamorphic minerals, the sample was
not chosen for analysis. Some collections were picked even with a single sample, if it
was the only one in the given area. Likewise, somewhat altered samples were not chosen
in areas with a lot of coverage. The locations of the dives, dredges;, and cores from which
we chose samples are shown in Figure 5-2.

The JR-31 expedition sampled a number of shallow (1-2-m) rock drill-cores on
the top of the bank, and 52 dredges around its sides. Six of these dredges (JR31-3, 9, -12,
-39, -40, and -41) were chosen for this study as they contained several samples of fresh
gabbro. Seven of the oriented BR-cores and 10 non-oriented BGS-cores from the 22-km?*
platform at the top of the bank were also selected for analysis.

The MODE 98 and ABCDE expeditions used SHINKAI 6500 to sample traverses
up the sides of the bank. Mode 98 sampled the west wall of the bank, and dives 6K-459,
6K-460, 6K-466, and 6K-467 were selected for analysis. One sample, 6K-467-11, is a
dike that contains plagioclase and clinopyroxene. Cruise ABCDE sampled all sides of
the bank and seven dives were selected (6K-643, -645, -646, -647, -649, -650, and -653).
The samples are listed in Table 5-1 and collection-locations are shown in Figure 5-2.

We have divided the bank into four study areas. The platform area (“Top of the
bank”) includes all the JR31-BR- and BGS-drill cores, and Hole 735B. The northern area
(“North”) includes JR31-12, 6K-466/467, 6K-646, and 6K-650, the western area
(“West”) JR31-9, and 6K-459 and 6K-460, and the southern area (“South”) consists of
JR31-3, -39, -40, and —41 and 6K-643, -645, -647, -649, and —653.
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3 Methods

The magmatic minerals, olivine, clinopyroxene, orthopyroxene and plagioclase,
were analyzed with the MIT 4 and 5-spectrometer JEOL 733 Superprobes, using 15kV
accelerating voltage and 10nA beam current. When possible, continuous 10-xm 10-spot
traverses in the core and the rim of adjacent mineral-grains of plagioclase and
clinopyroxene were analyzed. Continuous 10-xm 6-spot traverses in the core and rim of
orthopyroxene were analyzed, whereas olivines were analyzed in six spots throughout the
crystal. A 10 nA beam current, 15 kV acceleration potential, and a 10-um beam were
used for the analyses. Counting times were 10-40 seconds, depending on the elements.
Standards used were DJ35, Marjalotti Olivine, Synthetic Fayalite, Alp7 orthopyroxene
and Lake County Labradorite, and the major elements have a standard deviation of less
than 2%. Data were reduced with the CITZAF correction package using the atomic
number correction of Duncumb and Reed, the absorption coefficients of Heinrich and the
fluorescence correction of Reed (Armstrong, 1995). The results of the mineral analyses

from this study are listed in Table 5-2.

4 Results

4.1 General mineral distribution and petrography

Plagioclase and clinopyroxene are ubiquitous throughout the sample-suite. The grain-
sizes range from medium grained to very coarse-grained, and fine-grained micro-gabbros
are only rarely present. In undeformed samples, fresh plagioclase appears as randomly
oriented euhedral laths, surrounded by subophitic clinopyroxene (Fig. 5-3a,b). Olivine
appears as anhedral grains, with a characteristic cracking-pattern, whereas
orthopyroxenes are granular, or appear as rims around olivine (Fig. 5-3e). Oxide-
minerals are common, and are usually interstitial to the other minerals (Fig. 5-3c).
Ilmenite and magnetite occur in individual grains or as trellis-twin exsolution-lamellae
after ulvospinel.

High temperature deformation has caused kink-bands in plagioclase with anhedral

and granular augite and plagioclase (Fig. 5-3d). Some samples have saussuritized
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Figure 5-3: A: Sample # JR31-12-1: Sub-ophitic augite surrounds plagioclase-laths with interstitial olivine.
Cross-polarized light. Plag=plagioclase, aug=augite, ol=olivine. Field of view is 3” from left to right. B:
Same slide in parallel light. C: Sample 6K-466-8, field of view is 1” across. An olivine-gabbronorite-
oxide-gabbronorite contact, as seen by the extensive interstitial oxide-crystals to the right. The boundaries
between the lithologies are indicated by the white line. The picture is taken using a combination of
reflected and parallel light to distinguish the different minerals. Three areas (indicated) have been
analyzed. D: Sample # BR8-2-1-5g: The sample has been partially deformed at high temperatures, as seen
in the kink-banded plagioclase and rounded augite. Cross-polarized light, the slide is 1” across. E: Detail
of C; a thin orthopyroxene-grain lies between an olivine grain (with the characteristic cracking-pattern) and
plagioclase
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plagioclase and clinopyroxene altered to green amphibole; these are signs of greenschist-
facies alteration. These samples were therefore not chosen for mineral-analysis. Olivine
is altered to iddingsite under the same conditions, and fresh material was not available
representing most of the rocks that originally containing olivine, although we have found
olivines from the entire compositional spectrum of gabbros. Orthopyroxene is also more
susceptible to this low-grade alteration than augite, but small mineral-cores are often
available for analysis.

Point-counting of thin-sections in order to obtain mineral norms has not been
performed, as the rocks are generally so coarse-grained that even a large (2”x3”) thin-
sections does not adequately represent the mode of the rock (Fig. 5-3a). However,
Coogan et al, 2000 analyzed the whole-rock compositions of the rocks around Atlantis
Bank sampled during the JR-31 expedition. We have calculated norms based on the
methods outlined in Grove et al. (1992) (Fig. 5-4), and compared them to MORB from
the ridge to the north and transform walls, and to the average of Hole 735B (Dick, et al.,
2000). If the gabbros were formed by pure fractional crystallization, the whole-rock
compositional norms should start as pure olivine (dunite), continue along the plagioclase-
olivine cotectic and end at the 4-phase saturation-boundaries outlined in Figure 5-4. The
whole-rock compositions clearly span a wider range than this, with large excesses in
plagioclase and augite, suggesting mechanical separation of the minerals or reactive
modification of mineral proportions after cotectic crystallization. The presence of non-
cotectic proportions of olivine, plagioclase and clinopyroxene is even more pronounced
in the samples from Hole 735B. The Hole 735B samples are, however, very small in
volume, so they may not be as representative for the bulk-rock composition as the grain-

size is coarse.

Mineral analyses

4.1.1 Plagioclase
The average plagioclase has 49.5 % An, the median is 49.8%, and the highest is 71.5 %

An. Only a few plagioclase grains have An below 32.3%, and those grains are possibly
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Clinopyroxene

Plagioclase Olivine
Clinopyroxene - '

c735B
©JR31, this study

®Basalt glasses
from the ridge

Plagioclase limHemChr

Figure 5-4: The mineral modes of Atlantis Bank gabbros and average Hole 735B compositions calculated
from whole rock data using Grove et al., (1992). The cotectic lines in the uppermost figure represents latm
olivine-plagioclase-augite-melt saturation-boundary based on a basalt-glass from the spreading ridge, thus

suggesting the cumulative nature of the gabbroic rocks.
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Figure 5-5A: Cores and rims of clinopyroxene and plagioclase from this study. Note how the distribution
between cores and rims are indistinguishable (insert). Line indicate 1:1.
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Figure 5-5B: The distribution of cores and rims of plagioclase and clinopyroxene from Hole 735B. The
data are from Dick er al., (2001) and Angeloni and Dick (1990) (troctolite-dikes from the upper 550m of
the hole). The crossing line indicate 1:1. The core-rim information is not generally available for the upper
550 m of Hole 735B.
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altered. The orthoclase contents increase slightly as An decreases, although it rarely is
higher than 1-mol%.

Zoning is common (Figure 5-5a). Plagioclase is reversely zoned in 50 out of 109
cases (i.e. rims are more An-rich than the cores), with respect to An. The core to rim
difference in An contents is >10 for microprobe uncertainty (and mineral inhomogeneity)
in 23 of the 50 reversely zoned samples. 59 plagioclase grains are normally zoned, and
the core to rim change in An content is > 10 in 37 of the 59 normally zoned samples.
Low anorthite plagioclase cores are also often overgrown by higher anorthite plagioclase
with a different crystal orientation, suggesting that the low An-core acted as a nucleation

site for the larger crystal (Fig. 5-7).

4.1.2 Clinopyroxene

The augites analyzed in this study ranges from Mg# 48.1 to 86.3 %, with an average of
74.5 % and a median of 74.9 % (Figure 5-5A and 5-6). Rims of the clinopyroxene are
defined as the contacts with other minerals, whereas the cores are the respective areas
furthest away from this contact. Cores and rims were analyzed in 158 clinopyroxenes
(Figure 5-5A). Of these, 78 have reverse zoning (24 > 10), whereas 80 are normally
zoned (27 > 10).

The minor elements also vary significantly. Figure 5-7A shows two large
clinopyroxene crystals enclosing many large plagioclase laths. The cores and rims of
these grains show a wide range in compositions. Both Cr,0; and TiO, show a range
comparable with the range of clinopyroxene compositions analyzed in the entire lower
half of Hole 735B (Dick et al., 2002). This large single-sample range for the minor

elements is common throughout the suite (Figure 5-7B).

4.1.3 Orthopyroxene

Low-Ca pyroxene appears as orthopyroxene. The grains are susceptible to sea-floor
alteration, and thus fewer have been analyzed than in the more protected and unaltered
Hole 735B. Orthopyroxene compositions range from Mg# 56 to 78%, with an average of

67% (Figure 5-6). Chemical zoning is not pronounced in the orthopyroxenes.
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Figure 5-6: The tetrahedral components of the pyroxenes from this study calculated from Lindsley (1983).
A thin black line connects coexisting minerals.

Mg# Tio
CPX c:zoa MZZ

Figure 5-7: Sample #JR31-12-6. Each mineral analysis-point is shown with a white point and the analysis
is shown with it. The key is to the upper left. The cross-sections through two large plagioclase crystals are
shown. Two large augite-grains surround laths of plagioclase (their separation is marked by a yellow line).
There is pronounced zoning in the minerals, and the Mg#, TiO, and Cr,0; span almost the entire range in
composition seen otherwise in the suite (insert). Notice how the plagioclase-grains have near constant
compositions throughout the thin-section. Field of view is ~4cm from left to right.
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4.1.4 Olivine

Seafloor alteration has also reduced the number of magmatic olivines available to be
analyzed in this study. The forsterite content ranges from 46 to 80 %, with an average of
67%, and a median of 69%. No zoning is observed, and grains within a sample are

generally uniform in composition.

4.2 Geographical Variability Around Atlantis Bank

Four areas on and around Atlantis Bank appear to have distinctive distributions of
magmatic minerals. Figure 5-8 (a,b,c) shows the anorthite content of plagioclase vs. the
Mg# of coexisting augite, and orthopyroxene, and the forsterite content of olivine
respectively. The northern area clearly has the widest range in compositions, although
they never reach the high Mg#’s in clinopyroxene and An contents in plagioclase of the
primitive cross-cutting troctolites in the upper levels of Hole 735B. In fact, one of the
more primitive analyses among the surface samples is from a dike crosscutting the Dive
6K-647 section. Dive 6K-466, directly below 6K-467, sampled gabbros just above a
contact with the residual peridotites, and these rocks have plagioclase as low as Ans;.
The samples from the top of the bank exhibit more intermediate compositions, where few
plagioclases are higher than Ang, or lower than An,. Some of the individual cores are
unusual, as shown by BGS-24, which has a composition trend opposite to the other
samples (Fig. 5-8a). The Western Wall of the bank has an even narrower trend, and
resembles the distribution for the lower 500 meters of Hole 735B. This is interesting, as
traverse 6K-460 was sampled close to Hole 735B, at a water depth just below the total
depth from sea-surface to the bottom of the Hole. The southern part of the bank is also
evolved geochemically. The layered olivine gabbros from the crust-mantle transition in
this area (Dive 6K-649 and 653) are surprisingly fractionated as well with Ang 4 and
augite Mg#’s from 70 to 82 mol%. The sample areas do follow the composition fields
for Hole 735B. By contrast, the composition field for Hole 1105A gabbros (Thy, 2003)
is offset to consistently more anorthitic plagioclase (or less Mg-rich augite) compositions

than Hole 735B. A comparison of the whole-rock data from Hole 735B (Natland and
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Figure 5-8: A: The composition of coexisting plagioclase (plag) and augite (cpx) for each of the areas from
around Atlantis Bank. The fields represent the distribution of Hole 735B gabbros (Dick et al., 2001) and
the lower right diagram also shows Hole 1105A field (Thy et al., 2003).
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Figure 5-8: B: The composition of coexisting plagioclase (plag) and olivine (Fo%). The fields represent
Hole 735B olivine-gabbros.
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Figure 5-9: Whole-rock composition of gabbros from 735B (Dick et al., 2000), JR31 (Coogan et al. 2000),
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Atlantis Bank.
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Dick, 2002) to those obtained by JR-31 (Coogan et al., 2000) and Hole 1105A
(Shipboard Scientific Party, 1999), however, show no discernable difference in Ca# vs.
Mg#’s (Figure 5-9). Therefore, there may be analytical differences between the electron-
probe methods used by Thy (2003) and the one in this study and by other investigators.
Olivine, as mentioned, is more rare than in Hole 735B due to iddingsite-alteration.
The pause in olivine-crystallization, seen in many layered intrusions (Bowen and
Schairer, 1935), is not expressed in these rocks or in Hole 735B, as olivine exists
continuously from Fog, to Fo,;. Orthopyroxene is even scarcer, but is again found at all

the areas, with an intermediate range of compositions compared to Hole 735B.

5 Discussion

The rocks sampled on and around Atlantis Bank likely represent crystallization-
products formed during 50 to almost 90% fractionation of a primitive magma in
equilibrium with the mantle based on modeling their composition using Melts (Ghiorso
and Sack, 1995) and the “SWIR PMORB” composition discussed in Chapter 3 (Fig. 5-
10A, see Chapter 3 for extensive explanation of the fractionation model). The northern
sample-collection has the widest compositional range, whereas the top of the bank has a
narrower range, from ~55 to 82% crystallization. The rocks from the south are
surprisingly evolved, representing 65-90% crystallization, including a well exposed
layered olivine-gabbro with An; and Fo_, at the gabbro-peridotite contact. The samples
from the western wall are also evolved, and the rocks include mylonitized ferro-gabbros
from the crust-mantle boundary. The most primitive sample along the wall is in fact a
dike cross-cutting the section. Thus, we have not found the “missing cumulates” exposed
anywhere around Atlantis Bank (i.e. hypothetical troctolites that should have been
produced by the initial stages of crystallization from melts extracted from the mantle and
emplaced in the Hole 735B section).

It is clear that the troctolites do not exist at or near the gabbro-peridotite contacts
exposed or inferred on the transform wall, where numerous samples of evolved olivine-
gabbros and ferrogabbros were recovered. Although the exact origin of this contact

between serpentinized peridotites and evolved gabbros is uncertain, it could be an
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intrusive contact between gabbroic rocks and residual peridotites, which was later altered
and exhumed. Locally, it could be a faulted tectonic contact whose origin has been
obscured by syn-and post-tectonic alteration, as believed to have been the case
immediately to the west of Hole 735B. To the Southwest on that transform wall, it has
been found in outcrop as a intrusive contact with gabbro overlying massive peridotite
(Moroshita et al., in prep).

The northern suite has gabbros that are somewhat more primitive than found
elsewhere over the bank, but they are not troctolites with primitive plagioclase and
olivine. The most primitive troctolites found at Atlantis Bank are, in fact, the troctolite
dikes that crosscut the upper 550-m of Hole 735B. The transform wall may be an
unusual place to find primitive gabbros at very-slow spreading ridges if the mantle-
derived magmas are emplaced at the segment centers and then intruded down-axis
towards the transform (e.g. Whitehead et al., 1984; Dick, 1989). If we assume that melts
in equilibrium with the mantle were indeed emplaced in the crust at the center of the
segment, and that only evolved melts reached the transform-area (e.g. after more than
65% of crystallization), then it is possible to estimate a minimum crustal thickness below
Hole 735B. Far to the southwest of Hole 735B the gabbro-peridotite contact is exposed
500 vertical meters below termination of the drill-hole. Vanko and Stakes (1991) found
that Atlantis Bank has 1.65-km of missing (upper) crust based on fluid-inclusions. If the
gabbro-peridotite boundary is that of the crust-mantle boundary, and it has no topography
(unlikely), this would suggest an original crustal thickness on the order of 3.7-km at the
ridge-transform intersection. Thus, as the crustal thickness suggested by fractional
crystallization is 4.4-km (See Chapter 3), the center of the segment should be
proportionally thicker. At the center of the segment, e.g. Hole 735B, the cross-cutting
troctolites are the only cumulates in Fe-Mg and Ca-Na equilibrium with the spatially
associated lavas. The latter are interpreted as liquids derived by 25-40% of
crystallization from a primitive, mantle-derived parent (Fig. 5-10a and Chapter 3). In
addition, troctolite dikes have sharp but somewhat irregular contacts with the coarse-

grained olivine gabbros. This suggests that the troctolites in the upper part of Hole 735B
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Figure 5-10: The distribution of mineral-compositions relative to modeled liquid and solid lines of descent.
A: All the samples, compared to the 1kbar crystallization model presented in Chapter 2. The Gabbro-trend
represents the anorthite of plagioclase with the Mg# of co-existing augite, whereas the Melt-trend represent
the Mg# and Ca# of the evolving melt. The Atlantis TI basaltic glasses are from Johnson et al. (1990).
Each gray tie-line connects mineral-assemblage and a melt at the same stage of evolution in 10%
increments. B: The Gabbro-trend compared to the area in the North. C: The Gabbro-trend compared to the
top of Atlantis Bank. D: The Southern area. Note that the gray squares indicate the olivine-gabbros at the
crust-mantle boundary. E: The Western area.
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Figure 5-11: Minor element chemistry of augites analyzed in this study, compared to the upper 550-m of
Hole 735B. A: Average Mg#-TiO, of augites from our study compared to the general outline of Hole 735B
and the cross-cutting Hole 735B troctolites from the upper 550 meters of the core. B: Average Mg#’s vs.
Na,O for the same rocks. C: Rocks in a single dredge in the porthern showing wide ranges of compositions
in augite (individual analyses). In addition. single samples can have dramatically different augite
compositions between grains (JR12-6a and 6b). The more evolved JR12-28 sample plot perpendicular to a
normal fractionation trend. D: There is no direct linear relationship between Na,O and TiO, in augite. E:
Augites from a single, evolved oxide-olivine gabbro has more refractory cores than rims, plotting
perpendicular to the fractional crystallization trend in C. F: There are as many reversely zoned augites as
there are normally zoned ones: true both for Na,O (open squares with bars indicating 10 variation) and for
TiO, (closed squares with bars indicating 10 variation).
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have an intrusive/reactive relatibnship to the wall-rocks and represent melt-channels for
magma potentially erupted through the lower crust.

Figure 5-11 shows the distribution of minor-elements for the surface samples (this
study) and for Hole 735B. The high Ti-Na troctolites from Hole 735B are clearly
different from the rest of the core. Meyer et al. (1989) and Bloomer et al. (1989) both
noted the Mg/Fe ratios of the mafic minerals in Southwest Indian Ridge gabbros are high,
compared to the anorthite content of the coexisting plagioclase. Sample JR31-12-6 (Fig
5-7, 5-11E) has a large chemical range, while the more evolved rock from the same
dredge-haul (12-28) plots perpendicular to the fractionation-trend. Sample 6K-466-8 is
an olivine-gabbronorite — oxide-gabbronorite contact (Fig. 5-3C and 5-11G) and has
augite-rims with more primitive compositions than the respective cores. In addition, the
oxide-rich part has higher Mg# augites than the olivine-rich ones in the same sample.
Figure 5-11F shows how the minor-element distribution is indistinguishable between the
primitive and evolved gabbros, thus and that there are as many reversely zoned as normal
zoned augites (Fig. 5-11H).

Meyer et al., (1989) argued that the interstitial melts in 7°E Southwest Indian Ridge
gabbros reacted and equilibrated Fe and Mg with olivine, causing interstitial melt to
maintain a higher Mg# during fractionation. Therefore, the augite that precipitated from
this melt appears refractory relative to the melt that produced it. Minor, incompatible
oxides like TiO, increase in a fractionating melt, explaining why the high Mg#
clinopyroxene has high incompatible element concentrations. If the melts that produced
the entire crustal section reacted in this way with olivine, individual dredge suites or even
individual samples would show a positive correlation between Mg# and TiO, and Mg#
and Na,0. Inspection of Figure 5-11 indicates that the opposite is the case. When the
fine-grained troctolites are excluded from the upper 550-m of Hole 735B, its hard to say
that there are any systematics in the scatter at all. In our surface-sample data-set,
individual samples and dredge-hauls have unusually large variability.

Meyer et al.’s (1989) plagioclase and clinopyroxene analyses also commonly showed

reverse zoning. Angeloni and Dick (1990) demonstrated that the cross-cutting troctolites
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of Hole 735B consistently have reversely-zoned plagioclase, suggesting a process of melt
percolation and overgrowth on plagioclase by later, more calcic melts with higher levels
of incompatible elements. In addition, Bloomer et al. (1991) found that Unit V of Hole
735B characteristically has reversely zoned plagioclase. They argued that the high Mg#
clinopyroxene and the plagioclase originated from separate magma sources, and that the
crystallization happened in a mushy boundary layer. The interstitial melts are therefore a
mix between main magma chamber and the interstitial equilibrium melt. Langmuir
(1989) developed such a model for in situ crystallization in magma chambers. In this
model, “melts from magma-chamber margins” mix with comparatively primitive melts
within “magma-chamber melts”, and magmas then evolve along a chemical path different
from that of fractional crystallization. However, the in-situ crysfallization model only
returns the interstitial melts to the magma-chamber, it does not allow for fresh, primitive
melts to enter the mush. Therefore, Langmuir’s model would not make the intercamulus
minerals of the most primitive cumulates appear more refractory.

Three processes may lower the TiO,-content of melt along a given liquid-line of
descent: Mixing with a primitive melt; crystallization of ilmenite; and melting of, and
reaction with, pre-existing cumulates by interstitial melts. Mixing of evolved and
primitive melt will increase the melt Cr,0, and decrease the Na,O relative to the end-
members. Cr,0, is generally low in the more evolved rocks, thus extensive mixing with
primitive melts are unlikely. Crystallization of ilmenite will not increase the Mg# of the
melt significantly. It was shown in Chapter 4 that dissolution of gabbroic cumulates
produce melts that are low in TiO,, high in Na,0 and have high Mg#’s and Ca#’s
(Ca/(Ca+Na)). In fact, if plagioclase-augite phase-boundaries melt, the new melt will
have ~10-15 mol% higher Mg#’s and 10% of the TiO, relative to the melt that produced
the gabbros in the first place. Reprecipitation consequently produce the reverse zoning
seen in the evolved cumulates.

Our results from gabbroic surface samples from on and around Atlantis Bank suggest
that, with respect to chemistry, the rocks are more like the lower 1000-m of Hole 735B

than the upper 550-m. In terms of petrography, the presence of numerous massive
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ferrogabbros is more like the characteristics of the upper 500-m of Hole 735B. In
Chapter 3, the olivine-gabbros from the lower 1000-m were shown to be out of
equilibrium. It is therefore possible that reaction and dissolution with migrating melts
has modified the entire section. This process evidently may have eradicated both the
very primitive, and the highly evolved compositions around the Bank (except at the most
extreme end of the spreading segment). There, termination of detachment fault, which is
believed to have rooted in a shallow crystal mush zone below the sheeted dikes (Dick
pers. comm.), may have halted the process of melt migration before the primitive
character of the gabbros was lost. Thus, even more primitive cumulates could at some
point have existed, but may have been largely modified by later ascending melts. This
assimilafion-model is explored further in the next chapter, using trace-element

compositions for the gabbroic rocks on and around Atlantis Bank.

6 Conclusion

The gabbros on and around Atlantis Bank, Southwest Indian Ridge are likely the products
of ~50-90% fractional crystallization from a mantle-derived magma, and do not represent
a complete cumulate section. The area to the north of Hole 735B has the most primitive
magmatic minerals, whereas the southern gabbros are all evolved, including layered
olivine-gabbros sampled at gabbro-peridotite contacts. Gabbros from the Western Wall
and the top of the bank have intermediate compositions. The primitive and evolved ends
of the ODP Hole 735B spectrum are not recovered in our data.

Augite is more magnesian than expected for any coexisting plagioclase anorthite
content, and plagioclase and augite are frequently reversely zoned. TiO, of augite varies
inversely with Mg# at all levels of evolution, even after magnetite and ilmenite
crystallization. We propose an alternative model to simple fractional crystallization, as
there is evidence for extensive melt-rock reaction, possibly with simultaneous reaction
and dissolution in the cumulate pile. Assimilation of pre-existing cumulates during
crystallization will change the magma-budget and make our interpretation of the amount

of crystallization at Atlantis Bank very different. Thus, more primitive cumulates may
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have existed at an early magmatic stage, but have been completely reconstituted by later

ascending melts. This alternative model will be investigated further in the next chapter.
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Evolution of Oceanic Gabbros: in-situ and Ancient Examples

Chapter 6

Trace element mineral-chemistry of gabbros from
Atlantis Bank: Evidence for melt-rock interaction

Abstract

Trace elements in augite from gabbros on and around Atlantis Bank reflect melts
that crystallized 50-95% relative to a parental magma in equilibrium with the mantle.
This agrees well with our previous results using major-elements in Chapter 3. The
gabbros cannot have formed by simple fractional crystallization alone, as the rocks have
increasing LREE/HREE ratios with fractionation. The gabbros may instead have
crystallized by in-situ crystallization, or by significant assimilation of pre-existing olivine
gabbros. Even if the magmas have assimilated host-rocks upon ascent, they still must
have crystallized ~50% elsewhere before emplacement in the crust. Our previous
estimate for the original crustal thickness at Atlantis Bank of 4.4-km is therefore valid.

Augites from a diabase-dike represent much more depleted melts than the melts
that produced the gabbros. No known mineral-fractionation can produce the refractory
pattern seen in this rock and we suggest that this dike represents depleted melts that did

not mix with the melts found on and around Hole 735B.

1 Introduction

Lower ocean crust gabbros are believed to form from the same basaltic melts that
are parental to the upper crust. Trace- and rare-earth element analyses are frequently
used to interpret the origin and evolution of such oceanic lavas. The lower crust,
however, is more rarely analyzed for REE and trace element variability due both to
limited accessibility and because it consists of cumulus and inter-cumulus minerals with
potentially very TE- and REE-rich accessory-minerals. For the Atlantis Bank gabbros, an
extensive major and trace element data-set now exists in compilations of whole-rock
analyses from Hole 735B and Atlantis Bank area (Hart et al., 1999; Natland and Dick,
2002; and Coogan et al., 2001).
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The method of accretion of the lower ocean-ridge crust has long been debated,
though fractional crystallization is considered the main process for the evolution of the
upper crust. In-situ crystallization (Langmuir, 1989), assimilation-fractionation-
crystallization (AFC, e.g. DePaolo 1981 and discussion in Chapter 3 and 4), and magma-
mixing may also be important in the evolution of the lower crust. In-situ mineral-
analyses of oceanic gabbros may help in interpreting the origin and evolution of the melts
that formed lower crustal rocks. Coogan et al. (2000) showed that very primitive Mid-
Atlantic Ridge olivine gabbros have plagioclase-grains with cores that have a different
origin than that of the overgrowing plagioclase rims and interstitial clinopyroxene, and
interpreted this as the result of magma mixing within the lower crust. Dixon et al. (1986)
investigated an unusual aphyric ferrobasalt containing evolved gabbro-xenoliths from the
Juan de 4Fuca Ridge, and concluded that the basalt represents hybrid magma formed by
highly evolved magma, mixed with more primitive melts. The evolved melt-component
produced the oxide-gabbros by filter pressing along a partially crystallized mush
boundary. Coogan et al. (2002) demonstrated that East Pacific Rise gabbros exposed at
Hess Deep represent a complex mixture of melts, some of which are mixed in the mantle,
some of which are not. They suggested that all the melts added to the crust do not mix
within a central axial magma chamber, and some partially crystallize in isolation within
the lower crust. The homogeneity within the upper ocean crust is therefore surprising, as
the existing knowledge of accretion of lower ocean-crust suggests a very heterogeneous
process of accretion.

We have analyzed augites in eight Atlantis Bank gabbros for trace- and rare-earth
elements. The sample set includes the entire compositional range of gabbros recovered
from Atlantis Bank, from very primitive troctolites in Hole 735B to ferrogabbros
recovered along the side of the platform, and one coarser-grained diabase sample from
the northern wall (see Chapter 5). This data-set allows us to re-evaluate the magma-

budget for Atlantis Bank when assimilation is taken into account.

2 Analytical methods

Unaltered cores and rims of clinopyroxene from eight samples were analyzed on

the CAMECA IMS 3f ion probe at Woods Hole Oceanographic Institution using the
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methods of Shimizu and Hart (1982). A primary beam of O" ions was focused to ~20pm
for REE (La, Ce, Nd, Sm, Eu, Dy, Er, Yb) and ~10um for other trace elements (Ti, V, Cr,
Sr, Y, Zr). Molecular interferences were eliminated by energy-filtering and a secondary
voltage offset of —30 to 60V for the REE, and —90 for the other trace elements.
Uncertainties based on counting statistics were 5-10% (1) for REE and 1-5% (10) for

the other trace elements. The data is presented in Table 6-1.

3 Results

The spider-diagrams and REE-plots for the au gites are shown in Figure 6-1 and 6-
2 respectively. It is clear that there are several populations. The diabase (JR31-12-28)
has a very steep, refractory pattern, different from the rest. Almost all of the augites have
negative Eu-anomalies, indicating that the augite crystallized after substantial volume of
plagioclase had been fractionated. The REE-concentrations have been inverted using the
partition-coefficients from Table 6-2 in order to present the data as the hypothetical

equilibrium melts for the augites (Bédard, 1984)(Figure 6-4B).

4 Discussion

Except for the refractory diabase pattern, melt produced by 5.5 % by batch
equilibrium melting in the spinel facies of depleted upper mantle (DMM) provides an
adequate, sub-parallel, fit to the melts compositions calculated from the most primitive
gabbroic augites (Figure 6-2B and Table 6-2). We used the DMM-composition and the
partition-coefficients of Workman (in prep). Robinson et al. (2001) showed that basalts
representing the upper crust formed contemporaneously to Atlantis Bank likely formed
by fractional melting of 2 mantle with a potential temperature as high as that of the Mid-
Atlantic Ridge at 23°N or Juan de Fuca Ridge at 45°N. They found that the difference in
trace-element compositions and melt-production is due to a 20-km conductive lid on the
mantle in this region, causing a larger fraction of melting to occur in the garnet stability-
field below the dry solidus. Thus, the melts that are produced have slightly higher
La/Sm-values than normal MORB even if th¢ isotopes are those of a normal MORB
(Robinson et al., 2001; Snow, 1993). The calculated crustal thickness as inverted from

trace-elements corresponds to 3x1km of crust (Robinson et al., 2001), shallower than
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Figure 6-2: A: REE-plots for the augites in this study. The error-bars indicate 1. B: The hypothetical
melts in equilibrium with the gabbro augite-crystals. Two parental melts, made from 5.5 and 30% batch
equilibrium melting of the depleted upper mantle (Workman, in prep) are also shown. The partition
coefficients used are from Bédard (1994).

244




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

what was found by Muller et al. (1997) by seismic surveying, if one assumes that the
seismic Moho represents the crust-mantle boundary.

Inspection of Figure 6-2A shows three main groups of augite-crystals: the JR31-
12-28, diabase with very low concentrations; the primitive and intermediate gabbros,
which show equilibrium melt REE-patterns nearly parallel to the parental melt; and the
very evolved rocks with a more LREE-enriched pattern. Figure 6-3 shows the evolution
of the liquid-lines of descent for magmas calculated for 1) fractional crystallization (i.e.
Rayleigh fractionation); 2) In-situ crystallization (Langmuir, 1989) where magmas
crystallize and create a mush along the walls of the magma-chamber, and varying
fractions of the interstitial melt (f) returns to the main magma body; and 3) Assimilation-
Fractionation-Crystallization (AFC; DePaolo, 1981) by assimilation of a typical Atlantis
Bank olivine-gabbro (Table 7-2). The liquid-lines of descent represent 0-90%
crystallization relative to the primitive MORB calculated from DMM. The bulk-partition
coefficients are calculated assuming fractionation of 35% augite, 15% olivine and 50%
plagioclase for all stages of crystallization. Figure 6-3A shows that in-situ crystallization
where a small fraction of the interstitial melt is returned to the magma-body, or AFC,
where the mass assimilated is similar to the mass crystallized, describe the evolution of
the augites better than simple fractional crystallization. Figure 6-3B suggests that none of
these models work very well, and that the gabbros have complex, multi-stage evolutions
than can be modeled for these processes. The best fitting AFC and In-situ-model are
further investigated in Figure 6-4. If AFC or in-situ fractionation controlled the melt
evolution, then the range of trace-elements concentrations formed in the gabbros
represents >50% - 95% crystallization. This is consistent with the model result
developed in Chapter 3, and the melt budget of more than 4.4-km crust produced at
Atlantis Bank, in contrast to the conclusions of Robinson et al. (2001).

The very refractory-looking diabase augite is not explained by the any of the
fractionation models, even though the augites are fairly evolved with Mg#’s as low as 75
(see Figure 5-11C). In fact, it is almost impossible to produce such a primitive, depleted
composition by accumulated melt of a MORB-source mantle. Figure 6-2B shows a melt
produced by 30% melting of primitive upper mantle, and although the composition has as

low concentration as JR31-12-28, it is nowhere near as depleted in LREE relative to-

245




Evolution of Oceanic Gabbros: In-situ and Ancient Examples

25 P
Yb ppm | &40' 08
A\ [T
20 - RN
.";ﬂo' , - »n
15 - el Ew
m Ma/MC=0.9
»
]
10 -
5+ '11—1 situ crystallization, f=0.2
0 R S
0 , 50 100 Ce ppm 150
160
Nd ppm Ma/Mc=0.5
120 - "
100 -
80 4
60 -
40 o
20 u
o = Negative Eu anomaly
0.2 0 -0.2 -0.4 -0.6 -0.8

Eu#

Figure 6-3: Crystallization models for our samples compared to the hypothetical melts in equilibrium with
the augites. A: It appears that the AFC-models and in-situ fractionation fit the augite-melts better than a
pure fractional crystallization model. “Ma”=Mass assimilated; “Mc"=Mass crystallized; “f” = fraction of
melt returned from the mush-zone to the magma chamber; Eu# = (Eu*-([Sm*+Gd*] x 0.5) —1), where Eu*,
Sm* and Gd* represent chondrite-normalized values. Negative Eu#’s are negative Eu-anomalies,
indicating fractionation of plagioclase from the melt.
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Figure 6-4: REE-element plots for crystallization models (normalized to the C1 chondrite of Taylor and
MacLennan (1995)). FLR=Fraction of liquid remaining, the gray lines describe degree of fractionation.
FLR(0.05) = 95% crystallized relative to the original melt. The gray field outlines the theoretical melt
compositions based on the composition of augite in the gabbros (note that the diabase-data are excluded).
A: In-situ fractionation, where only 30% of the interstitial melt is returned from the mush-zone to the
central magma. B: The fractionation and crystallization of the DMM.-derived melt happens during bulk-
assimilation of the average olivine gabbro from Hole 735B (Natland and Dick, 1992). The diagram
demonstrates that even if the melt experienced assimilation of pre-existing olivine-gabbros, the gabbros
represent melts that first fractionated 50% elsewhere, but then crystallized to near completion.
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HREE. This is not the first diabase augite analyzed with such refractory compositions.
Dick and Johnson (1995) found similarly depleted diopside and augite minerals from
dikes in Hole 504B near the East Pacific Rise. They suggested that the strongly depleted
patterns were due crystal-growth phenomena and heterogeneous nucleation in the early
stages of melt crystallization prior to intrusion of the dikes as explored by Shimizu (1983,
1990). In the case examined by Dick and Johnson (1995), however, theur augite
phenocrysts were strongly sector zoned with respect to trace-elements. This is not the
case here. In addition, as stated by Shimizu (1990) the kinetic effects mostly affect the
M1 site of clinopyroxene, where the high field-strength elements reside (e.g. Ti, V, Sr,
Cr). The M2-site is the host-site for the REE, and is not affected by kinetics of
crystallization in the same way. It is likely that the theoretical melt composition derived
from the diabase augite-composition are similar to the actual melt composition that
produced it, representing a very depleted melt that did not mix with the other mantle-
derived melts on ascent. The theoretical melt composition determined from the augite-
composition is not as depleted as the “ultra-depleted melt” from Sobolev and Shimizu
(1993). However, in this thesis, we have explored the effects of melts interacting with
ascending magmas from the viewpoint of the gabbros. We find extreme variations in the
magmatic evolution of gabbros, and it is not surprising that dikes, which are melt
conduits from the lower to the upper crust, show diverse compositions t0o.

It can be rightfully argued that Chépter 3 to 5 of this thesis have shown that
gabbroic augites are not the ideal candidates for deduction of the evolution of the melts in
lower ocean crust environments, as they appear to be out of equilibrium with the rest of
the cumulate. This is also evident from Figure 6-3B. The whole-rock trace-element
contents of the gabbros represent the cumulate-minerals together with interstitial residual
melt-fractions, and may also not directly demonstrate the evolution of the system.
Ideally, we would like to support this type of calculation with analyses of all the minerals
in each studied sample. Coogan et al. (2000) did show that the melt that produced the
plagioclase was different from the one that produced the augite. In addition, the trace-
element composition of high-valent ions in primitive olivine (potentially experiencing
slower solid-state diffusion than Fe and Mg) can provide information on the evolution of

these gabbroic rocks. If detailed geochemical studies are performed in gabbroic samples,
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Figure 6-5: The augites-compositions from the diabase-dike represent melt-compositions much more
depleted than the gabbroic rocks, and the assumed parental melt. However, the melt-compositions are not
as refractive as the Ultra-depleted melt of Sobolev and Shimizu (1993).
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the entire accretion-history, including early precipitation of the initial gabbro, the
assimilation of the lower crust into ascending magmas and subsequent crystallization of
the hybrid magma might be deconvolved. However, it is clear that the cores and rims of
the gabbro augites in this study do show complex evolution that must involve more than a

simple fractional crystallization accretion model.

5 Conclusion

The trace element compositions of augites in Atlantis Bank gabbros show that
they cannot have formed by fractional crystallization of olivine, plagioclase and
clinopyroxene alone, as the rocks have increasing LREE/HREE ratios with fractionation.
The gabbros may have crystallized by in-situ crystallization, or by significant
assimilation of olivine gabbros. Even if the magmas have assimilated host-rocks upon
ascent, they still must have crystallized >50% elsewhere before emplacement. The trace-
element and REE-compositions show that the gabbros therefore represent melts that had
crystallized > 50% -95% relative to a parental magma in equilibrium with the mantle.
This agrees well with our previous results using major-elements in Chapter 3, and our
estimate for the crustal thickness at Atlantis Bank is still valid.

One diabase-dike has augite-crystals representing a much more depléted melt-
composition than the melts that produced gabbros. No known mineral-fractionation can
produce the very depleted and refractory REE-pattern seen in this rock and we suggest

that this dike represents depleted melts that did not mix with the melts that formed the

gabbros sampled on and around Hole 735B.
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Table 2: Partition Coefficients and starting compositions used In this study

Assimilated
Parental melt  olivine
Augite  Plagioclase Olivine| composition gabbro

La 0.0536 0.124 0.003 297 1.06
Ce 0.0858 0.117 0.004 7.26 3.21
Sr 0.06 1.8 0.008 97 164
P 0.13 0.08 0.008 742 99
Nd 0.187 0.068 0.01 6.90 3.19
Sm 0.291 0.058 0.02 2.45 1.12
Zr 0.26 0.01 0.02 59.0 24.7
Ti 0.34 0.04 0.02 6523 2420
Eun 0.33 0.37 0.02 0.94 0.59
Gd 0.37 0.04 0.03 3.32 1.66
Tb 0.40 0.03 0.035 0.59 0.30
Dy 0.38 0.03 0.034 3.90 2.02
Y 0.41 0.03 0.033 24.1 11.63
Er 0.39 0.01 0.04 2.37 1.24
Yb 0.43 0.01 0.05 2.23 1.16
Cr 3.8 0.02 1.25 389 224
Ni 2 0.04 10 97 108
v 3.1 0.03 0.03 273 153
Sc 3.9 0 0.16 36.9 36.5
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Chapter 7

Residual melt porosities in gabbros from Atlantis Bank

Abstract

We have developed a method for calculation of trapped melt-fractions in gabbros
from the Southwest Indian Ridge from whole-rock analyses. We use published data for
basaltic rocks to define the liquid-line of descent for REE, Ti and P, and major-elements.
The model is calibrated with the use of in-situ mineral analyses mass-balanced with
whole-rock compositions. We find that the trapped melt-fraction of ODP Hole 735B is
~15%. Eu-anomalies are inversely related to the trapped melt-fraction. This suggests
that the whole-rock positive Eu-anomalies in Hole 735B, the signature of cumulate

plagioclase, are masked by other REE’s.

1 Introduction

Lower crustal magmatic rocks are thought to consist of cumulus minerals that
precipitated from magma and accumulated along the roof, walls and floors of intrusions.
Depending on the closeness of packing of the crystals, melts become trapped in the pore-
spaces and may not be able to escape. This “trapped melt”-fraction, or residual melt
porosity contributes to the whole-rock composition, possibly modifying pre-existing
cumulate minerals, and crystallize interstitially to form the inter-cumulus minerals.
Methods to identify and calculate the residual melt-fractions are complicated, poorly
constrained, and frequently criticized (Natland et al, 1991; Coogan et al., 2001; Bédard,
1994).

We have directly estimated the amount of trapped melt gabbroic rocks using
major-and trace-element mineral and whole-rock compositions of the gabbros and
basaltic glasses from the area. We have then used our results to develop a more accurate
and internally consistent method for calculating trapped melts at Atlantis Bank simply

from whole-rock compositions, using the first method to calibrate it.
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Figure 7-1: The formation of trapped melts. The figure is based on Wager et al. (1960).
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2 Results

Our method for estimating the amount of trapped melt in oceanic gabbros is based
on the approach by Natland et al. (1991). The theoretical accretion of an olivine-gabbro
is outlined in Figure 7-1. At T,, plagioclase glomerocrysts form plagioclase-chains in a
semi-rigid network. At this stage, the minerals are in equilibrium with the melt, and the
network is permeable enough for the melts to flow through it and react with it. At T,,
permeability is reduced due to overgrowth on the cumulate minerals and increased
viscosity of the melt, and the interstitial melt is effectively trapped. The melts in between
the minerals at this stage are what is calculated as the “residual melt porosities”. This
melt continues to form minerals in-situ, and will re-equilibrate with olivine. As
nucleation of mineral-grains requires substantial under-cooling, the melt preferentially
crystallizes on pre-existing grains. Therefore, the minerals develop evolved overgrowths,
and the melt-pockets become smaller while the melt becomes more enriched in
incorﬁpatible elements. At T,, solidification is complete. The remnants of the small,
fractionated melt pockets are observed as the location of the most evolved plagioclase
and augite, together with accessory minerals like zircon, magnetite, ilmenite and apatite.
These accessory minerals contain most of the magma-budget for elements like Ti, P and
REE’s. Of the cumulus minerals (olivine, plagioclase and some of the augite), augite has
the largest partition-coefficients for these elements. As it is difficult to discern how an
augite grew without making very detailed maps of the elemental distribution, we have
tried to estimate the composition at the time of melt-entrapment by analyzing both core
and rim compositions for augite to get the potential range of the residual melt porosity.
Ideally, we would like to have the trace-element compositions of plagioclase also, in
order to estimate the internally consistent composition of the melt that fractionated the
cumulates.

Natland et al. (1991) used glass-compositions from the Southwest Indian Ridge to
estimate liquid-lines of descent for each element (TiO,, P,O; and Zr) with respect to
MgO. They related the bulk Mg# (Mg/(Mg+Fe®™) of a given gabbro to the melt that
crystallized it. TiO, in the rock vs. the theoretical amount in the liquid was used to get
the fractional dilution of augite by plagioclase and olivine, in order to calculate excess Zr

in the rock and thereby the amount of trapped melt in that cumulate.
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Figure 7-2: Liquid lines of descent for P,O;, TiO, and REE for basalts from Southwest Indian Ridge lavas
from 25°-60°E (Mahoney et al., 1992; Le Roex et al., 1989; David et al., 2000). A least-squares fit is made
for each element, and the equations are listed on each figure.
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Our model involves four steps:

1)

2)

3)

4)

It is necessary to find the composition of the interstitial melt at time of
entrapment. We determined the liquid line of descent for the regional lavas with
respect to P,O;, TiO, and REE (Fig. 7-2; data from PetDB), just like Natland (op.
cit) did. Therefore, if we know the Mg# of the melt, we can estimate the
incompatible element content of that melt. Note that the trace-element
composition at a given Mg# has a large variation and visa versa, thus any errors in
the Mg#-estimate for the melt may not matter.

We found the Mg# of the interstitial melt by using the composition of augite in

the gabbro, assuming Kd-2M . of 0.23. With respect to the discussions of
g g g p

Chapter 3 and 5, a lower partition-coefficient will give us a higher Mg# of the
melt, and will therefore give us slightly larger residual melt fractions. This
partition-coefficient therefore provides minimum values. We have performed
complete major-, and trace-element mineral composition analyses for all the
samples in this study, while Coogan, et al. (2001) provide whole-rock
compositions for three of these. We were therefore able to calibrate this well-
constrained model to one for the whole-rock compositions. Thus, if the Mg# of
the augite is not known, we find that a Kd//%,,=0.32 can be used to calculate the
Mg# of the melt. This partition-coefficient was found by comparing the Mg#’s of

the whole-rocks to those of augite, and fitting a Kd'% =, to what would

correspond to Kdims ., =0.23. The whole-rock calculation will, of course,

include the interstitial minerals, but again the range of REE along the liquid-lines
of descent is large enough that a Mg#25 is accurate enough to give a satisfying
model result.

We calculated the modes of the rocks where we had complete analyses by mass-
balance of the major-element mineral-compositions to the whole-rock
composition. We found that the whole-rock norm-algorithm equations from
Grove et al. (1992) provide adequate modes for our gabbros.

The residual melt porosities can therefore be calculated for each element using:

CRock - CMineml *MOdeMineml

Residual porosity= 100*
c Melt
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whole-rock method (black symbols) and a method using the mass-balance mode and Mg#’s of the minerals
and partition-coefficients with the LLD’s to get the trace-element mineral-compositions (gray symbols).
The mass-balance method gives negative residual-melt porosities for sample JR31 39-8. For each of the
other samples (ODP-87-3, JR31 12-1, -6) the porosities are calculated for the cores and rims analyzed in
each rock. For ODP-87-3, we used only Ti and P to find the residual melt porosity.
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Mode,y,. is the calculated mode of augite, and C,u Cypinern and Cye are the
concentration in the whole-rock, minerals (olivine, plagioclase and augite), and
melt, respectively. For our calculations, it was assumed that olivine and
plagioclase contain insignificant amounts of these incompatible trace elements
(except for Eu in plagioclase). If the concentration in the augite and plagioclase is
not known, it was calculated from the theoretical melts using the partition-
coefficients in Table 7-2, Chapter 6 and the Mg# of the whole-rock. The results
from the calculations for the rocks from which we had complete mineral-analyses
are shown as basalt regressions in Figure 7-2 and Table 7-1 and an example of the

calculations is shown in Table 7-2.

3 Discussion

We tested our whole-rock procedure for calculating residual melt porosities
(using partition-coefficients, calculated modes (Grove et al., 1992) and Mg#’s) by
comparing it to the more exact method involving the actual mineral-compositions, and
find that the results generally agree for all the trace-elements (Fig. 7-3). The 10 for the
average residual melt-porosities using 7 different REE’s is generally less than 5%.
Unfortunately, our technique is not valid for the evolved oxide gabbros (e.g. JR31 39-8)
as the oxides change the Mg# of the whole-rock, and increases the TiO, content
dramatically. The technique seems valid for the more primitive olivine-gabbros,
however, and the results for the cores and rims using the mineral-composition method
bracket the results from the whole-rock method. Our results are in agreement with the
technique developed by Bédard (1994).

We have applied our technique to the large whole-rock data-sets from Atlantis
Bank. We have, obviously, excluded ilmenite and apatite cumulates, and the felsic veins
from these calculations. The results are presented in Figure 7-4. We find that for Hole
735B (excluding the most evolved gabbros) the average trapped melt-fraction is 15%,
and the average standard deviation of 7 REE’s for each measurement is 3%. We also
find an exponential inverse correlation between the amount of trapped melts and Eu-
anomalies (Eu#=(Eu*-([Sm*+Gd*] x 0.5) —1; Pedersen et al. (1996)), where Eu*, Sm*

and Gd* represent chondrite-normalized values (Taylor and MacLennan, 1985). Positive
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Figure 7-4: Trapped melt fractions from ODP Hole 735B. A: Eu# anomalies for Hole 735B gabbros based
on whole rock analyses (Natland and Dick, 2002). B: Residual-melt porosities calculated from whole-rock
composition for Hole 735B gabbros based on the average results for REE, and for Ti and P. C: The
correlation between Eu# and the residual melt porosity in Hole 735B and in the gabbros around Atlantis
Bank.
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and negative Eu-anomalies are thought to indicate accumulated or removed plagioclase in
a rock, respectively. In Hole 735B, however, it seems that the Eu#’s are more a function
of the extent of trapped melt than they are of plagioclase accumulation, and can therefore

act as a proxy for residual melt porosity.

4 Conclusion

We have developed a technique for calculating residual melt porosity for oceanic
gabbros at the Southwest Indian Ridge from whole-rock analyses of major-elements with
rare-earth elements, Ti and P. The model is calibrated with the use of in-situ mineral
analyses. We find that the trapped melt-fraction of Hole 735B is ~15%. The Eu-
anomalies are inversely related to the trapped melt-fraction, possibly indicating that the
Eu# in Hole 735B is masked by the abundance of other REE’s in the whole-rock

compositions, as is often seen in diabase-dikes.
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Table 7-2: An example of the residual melt fraction calculation for JR31-12-1 calculated for Dy.

Method of calculation when the mineral-compositions are available

Calculation Result
Determine the Mg# of the melt on the basis of For the augite:
augite compositions: Mg# core 0.86 => Mg# melt = 0.59
Mgt Mgt gire *0.23 Mg# rim 0.84 => Mg# melt = 0.55
[ =
1= Mg# augire+Mg# augite *0.23
Determine the Dy-content for the melt on the basis Dy in the melt (core) = 7ppm
of the Mg# Dy in the melt (rim) = 8ppm
Dymelr =-23% Mg# melt +20

Need to know:

Augite norm based on mass-balance =0.24
Measured Dy in core 1.9 ppm
Measured Dy in rim 3.4 ppm

Whole-rock content of Dy = 1.1 ppm

= Chtinerar * Mode ginera: Residual porosity for the
C e Core=100%(1.1-(1.9*%.24))/7 = 9.2%
Rim=100%(1.1-(3.4*0.24))/8 = 4.1%

Residual porosity= 100* Crock

Method of calculation when only the whole-rock compositions are available

Mg#__*0.32

Mg# = - = -
8 menn - Mg#,_+Mg#__*0.32 Mg# (rock) = 0.795, => Mg# melt = 0.55

From Grove et al. (1992):

Recalculate whole - rock composition from weight % oxides to mol %,

and Al, Fe**, K, Na and P as : AlO, 5,K 50, Nag sO and PO, s.

Then combine molar MgO and FeO to FMO and K 50,Na, 0 to Alk.
Sum = Si0, — Ca0 ~ 2* Alk+ Cry03 + TiOp + 2 * POy s + FeO\ 5
Quartz = [Si0, 0.5 *FMO - 1.5 *Ca0 -0.25 *AlO, s~ 2.75 * Alk
+0.5%Cry03 +0.5*TiOy +2.5* PO, 5]/ Sum

Plagioclase = 4 *[AlO; 5 + NaOys — KOgs}/[2 * Sum]

Olivine = 2 *[FMO + 05 *(AlO, 5 — Alk)~ CaO - TiO, — Cr,0; +1.667* PO, 5)/[2* Sum]
Augite = 3*[Ca0 - 0.5* AlO, 5 + 0.5* Alk -1.667* PO, 5]/ Sum
limeniteHematiteChromite= 1.5 * [Cr,03 + TiO, + FeO, 51/ Sum
Orthoclase = 4 *[ KOy s5)/Sum

Apatite = 6*PO, 5/ Sum

Normalize all the minerals to 1 to get the mode of the rock.

Calculated mode of augite based on whole-rock =0.16

Theoretical Dy of melt Mineral Dy composition using partition-coefficient from Table 6-2:
(as calculated above): 7.36 DY pugite = 0.4 * Dypepy = 3

Residual trapped melt (as calculated above): 100*(1. 1-(3*0.16))/7.36 =8.2%
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